Extensions of Schreiber’s theorem on discrete approximate subgroups in $\protect \mathbb{R}^d$

A. Fish
{"title":"Extensions of Schreiber’s theorem on discrete approximate subgroups in $\\protect \\mathbb{R}^d$","authors":"A. Fish","doi":"10.5802/JEP.90","DOIUrl":null,"url":null,"abstract":"In this paper we give an alternative proof of Schreiber's theorem which says that an infinite discrete approximate subgroup in $\\mathbb{R}^d$ is relatively dense around a subspace. We also deduce from Schreiber's theorem two new results. The first one says that any infinite discrete approximate subgroup in $\\mathbb{R}^d$ is a restriction of a Meyer set to a thickening of a linear subspace in $\\mathbb{R}^d$, and the second one provides an extension of Schreiber's theorem to the case of the Heisenberg group.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we give an alternative proof of Schreiber's theorem which says that an infinite discrete approximate subgroup in $\mathbb{R}^d$ is relatively dense around a subspace. We also deduce from Schreiber's theorem two new results. The first one says that any infinite discrete approximate subgroup in $\mathbb{R}^d$ is a restriction of a Meyer set to a thickening of a linear subspace in $\mathbb{R}^d$, and the second one provides an extension of Schreiber's theorem to the case of the Heisenberg group.
$\protect \mathbb{R}^d$中离散近似子群上Schreiber定理的扩展
本文给出了关于$\mathbb{R}^d$中的无限离散近似子群在子空间周围是相对稠密的Schreiber定理的另一种证明。我们还从施赖伯定理推导出两个新的结果。第一个证明了$\mathbb{R}^d$中的任意无限离散近似子群是$\mathbb{R}^d$中线性子空间的Meyer集合的一个增厚的限制,第二个证明了Schreiber定理在Heisenberg群中的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信