EDAML 2022 Invited Speaker 1: Application of Machine Learning in High Level Synthesis

Ankush Sood
{"title":"EDAML 2022 Invited Speaker 1: Application of Machine Learning in High Level Synthesis","authors":"Ankush Sood","doi":"10.1109/IPDPSW55747.2022.00194","DOIUrl":null,"url":null,"abstract":"Traditionally high-level optimizations like CSA and sharing have been done technology independent. Doing word level optimizations PPA aware require accurate models for power, timing and area and that needs mapping to technology library and iterations which are runtime intensive and not suitable for multimillion instance designs. In this talk, we discuss how machine learning could help make the right power/area/delay tradeoffs early in the synthesis flow not sacrificing on turnaround time.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally high-level optimizations like CSA and sharing have been done technology independent. Doing word level optimizations PPA aware require accurate models for power, timing and area and that needs mapping to technology library and iterations which are runtime intensive and not suitable for multimillion instance designs. In this talk, we discuss how machine learning could help make the right power/area/delay tradeoffs early in the synthesis flow not sacrificing on turnaround time.
EDAML 2022特邀演讲嘉宾1:机器学习在高级合成中的应用
传统上,像CSA和共享这样的高级优化是独立于技术进行的。在PPA感知下进行字级优化需要精确的功率、时间和面积模型,并且需要映射到技术库和迭代,这是运行时密集型的,不适合数百万实例设计。在这次演讲中,我们将讨论机器学习如何帮助在合成流程的早期做出正确的功率/面积/延迟权衡,而不牺牲周转时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信