{"title":"Clustering stock price volatility using intuitionistic fuzzy sets","authors":"Georgy Urumov, P. Chountas","doi":"10.7546/nifs.2022.28.3.343-352","DOIUrl":null,"url":null,"abstract":"Clustering involves gathering a collection of objects into homogeneous groups or clusters, such that objects in the same cluster are more similar when compared to objects present in other groups. Clustering algorithms that generate a tree of clusters called dendrogram which can be either divisive or agglomerative. The partitional clustering gives a single partition of objects, with a predefined K number of clusters. The most popular partition clustering approaches are: k-means and fuzzy C-means (FCM). In k-means clustering, data are divided into a number of clusters where data elements belong to exactly one cluster. The k-means clustering works well when data elements are well separable. To overcome the problem of non-separability, FCM and IFCM clustering algorithm were proposed. Here we review the use of FCM/IFCM with reference to the problem of market volatility.","PeriodicalId":433687,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"1991 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2022.28.3.343-352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Clustering involves gathering a collection of objects into homogeneous groups or clusters, such that objects in the same cluster are more similar when compared to objects present in other groups. Clustering algorithms that generate a tree of clusters called dendrogram which can be either divisive or agglomerative. The partitional clustering gives a single partition of objects, with a predefined K number of clusters. The most popular partition clustering approaches are: k-means and fuzzy C-means (FCM). In k-means clustering, data are divided into a number of clusters where data elements belong to exactly one cluster. The k-means clustering works well when data elements are well separable. To overcome the problem of non-separability, FCM and IFCM clustering algorithm were proposed. Here we review the use of FCM/IFCM with reference to the problem of market volatility.