Removement of MisLeading Data in Transfer Learning Using BERT

S. Iwamoto, Hiroyuki Shinnou
{"title":"Removement of MisLeading Data in Transfer Learning Using BERT","authors":"S. Iwamoto, Hiroyuki Shinnou","doi":"10.1109/TAAI57707.2022.00043","DOIUrl":null,"url":null,"abstract":"When using machine learning to solve natural language processing tasks, the domains in which the model is trained and the domains in which the learned model is applied are different. Domain shift problem reduces model performance. Transfer learning using Bidirectional Encoder Representations from Transformers(BERT) is an effective method used for solving this problem. However, even with this method, we face the problem known as “negative transfer”, which occurs when some source labeled data adversely affect the learning in the target domain. In this study, we propose a for removing misleading data, causing negative transfer, for document classification tasks. We demonstrated the effectiveness of our proposed method in an experiment using the Webis-CLS-10 dataset.","PeriodicalId":111620,"journal":{"name":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI57707.2022.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When using machine learning to solve natural language processing tasks, the domains in which the model is trained and the domains in which the learned model is applied are different. Domain shift problem reduces model performance. Transfer learning using Bidirectional Encoder Representations from Transformers(BERT) is an effective method used for solving this problem. However, even with this method, we face the problem known as “negative transfer”, which occurs when some source labeled data adversely affect the learning in the target domain. In this study, we propose a for removing misleading data, causing negative transfer, for document classification tasks. We demonstrated the effectiveness of our proposed method in an experiment using the Webis-CLS-10 dataset.
利用BERT去除迁移学习中的误导数据
当使用机器学习解决自然语言处理任务时,训练模型的领域和应用学习模型的领域是不同的。领域移位问题降低了模型的性能。利用变形器双向编码器表示(BERT)进行迁移学习是解决这一问题的有效方法。然而,即使使用这种方法,我们也面临着被称为“负迁移”的问题,当一些源标记数据对目标域的学习产生不利影响时,就会发生这种情况。在本研究中,我们提出了一种去除误导性数据,导致负迁移的方法,用于文档分类任务。我们在使用Webis-CLS-10数据集的实验中证明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信