Topologies on Abelian Groups

E. Zelenyuk, I. Protasov
{"title":"Topologies on Abelian Groups","authors":"E. Zelenyuk, I. Protasov","doi":"10.1070/IM1991V037N02ABEH002071","DOIUrl":null,"url":null,"abstract":"A filter on an abelian group G is called a T-filter if there exists a Hausdorff group topology under which converges to zero. G{} will denote the group G with the largest topology among those making converge to zero. This method of defining a group topology is completely equivalent to the definition of an abstract group by defining relations. We shall obtain characterizations of T-filters and of T-sequences; among these, we shall pay particular attention to T-sequences on the integers. The method of T-sequences will be used to construct a series of counterexamples for several open problems in topological algebra. For instance there exists, on every infinite abelian group, a topology distinguishing between sequentiality and the Frechet-Urysohn property (this solves a problem posed by V.I. Malykhin); we also find a topology on the group of integers admitting no nontrivial continuous character, thus solving a problem of Nienhuys. We show also that on every infinite abelian group there exists a free ultrafilter which is not a T-ultrafilter.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V037N02ABEH002071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

A filter on an abelian group G is called a T-filter if there exists a Hausdorff group topology under which converges to zero. G{} will denote the group G with the largest topology among those making converge to zero. This method of defining a group topology is completely equivalent to the definition of an abstract group by defining relations. We shall obtain characterizations of T-filters and of T-sequences; among these, we shall pay particular attention to T-sequences on the integers. The method of T-sequences will be used to construct a series of counterexamples for several open problems in topological algebra. For instance there exists, on every infinite abelian group, a topology distinguishing between sequentiality and the Frechet-Urysohn property (this solves a problem posed by V.I. Malykhin); we also find a topology on the group of integers admitting no nontrivial continuous character, thus solving a problem of Nienhuys. We show also that on every infinite abelian group there exists a free ultrafilter which is not a T-ultrafilter.
阿贝尔群上的拓扑
在阿贝尔群G上,如果存在一个Hausdorff群拓扑,在该拓扑下收敛于零,则称为t滤波器。G{}表示在收敛于0的群中具有最大拓扑的群G。这种定义群拓扑的方法完全等同于通过定义关系来定义抽象群。我们将得到t滤波器和t序列的特征;其中,我们将特别注意整数上的t序列。本文将利用t序列的方法来构造拓扑代数中若干开放问题的一系列反例。例如,在每一个无限阿贝群上,存在一个区分序性和Frechet-Urysohn性质的拓扑(这解决了V.I. Malykhin提出的一个问题);我们还在整数群上找到了一个不允许有非平凡连续字符的拓扑,从而解决了一个Nienhuys问题。我们还证明了在每一个无限阿贝尔群上存在一个自由的非t超滤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信