A new method in simultaneous estimation of Kinect-V2 sensor calibration using shuffled frog leaping algorithm

Amir Safaei, S. Fazli
{"title":"A new method in simultaneous estimation of Kinect-V2 sensor calibration using shuffled frog leaping algorithm","authors":"Amir Safaei, S. Fazli","doi":"10.1109/PRIA.2017.7983048","DOIUrl":null,"url":null,"abstract":"Calibration of color and infra-red cameras is the fundamental step in almost every 2D or 3D image processing applications and pre-processing of images and videos. This article presents a novel method for estimation of 19 parameters of RGB and depth camera calibration in Kinect sensor, simultaneously. The proposed algorithm is based on applying shuffled frog leaping algorithm (SFLA) for deep optimization and estimation all parameters of intrinsic, extrinsic and lens distortions of cameras. This algorithm does not need the initial estimation for optimization and it can avoid trapping into local minima. Using non-direct estimation, we achieve middle computing matrices such as homography matrix, used in pinhole camera model. Re-projection error criteria is defined as the objective function in this algorithm. The radial lens distortion is estimated using SFLA. Kinect version 2 sensor is used in this research and experimental results show the proposed method is more efficient and accurate in compare with traditional numerical solutions.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Calibration of color and infra-red cameras is the fundamental step in almost every 2D or 3D image processing applications and pre-processing of images and videos. This article presents a novel method for estimation of 19 parameters of RGB and depth camera calibration in Kinect sensor, simultaneously. The proposed algorithm is based on applying shuffled frog leaping algorithm (SFLA) for deep optimization and estimation all parameters of intrinsic, extrinsic and lens distortions of cameras. This algorithm does not need the initial estimation for optimization and it can avoid trapping into local minima. Using non-direct estimation, we achieve middle computing matrices such as homography matrix, used in pinhole camera model. Re-projection error criteria is defined as the objective function in this algorithm. The radial lens distortion is estimated using SFLA. Kinect version 2 sensor is used in this research and experimental results show the proposed method is more efficient and accurate in compare with traditional numerical solutions.
基于青蛙跳跃算法的Kinect-V2传感器标定同步估计新方法
彩色和红外摄像机的校准是几乎所有2D或3D图像处理应用和图像和视频预处理的基本步骤。本文提出了一种同时估计Kinect传感器中19个RGB参数和深度相机标定的新方法。该算法是基于使用洗阵青蛙跳跃算法(SFLA)对相机的内在、外在和镜头畸变的所有参数进行深度优化和估计。该算法不需要初始估计进行优化,可以避免陷入局部极小值。采用非直接估计的方法,实现了单应性矩阵等中间计算矩阵,应用于针孔相机模型。该算法将重投影误差准则定义为目标函数。利用SFLA估计了径向透镜畸变。实验结果表明,与传统的数值求解方法相比,该方法具有更高的效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信