Adaptive Large Neighborhood Search Enhances Global Network Alignment

Vu Thi Ngoc Anh, Nguyen Trong Dong, Nguyen Vũ Hoàng Vuong, Dang Thanh Hai, Do Duc Dong
{"title":"Adaptive Large Neighborhood Search Enhances Global Network Alignment","authors":"Vu Thi Ngoc Anh, Nguyen Trong Dong, Nguyen Vũ Hoàng Vuong, Dang Thanh Hai, Do Duc Dong","doi":"10.25073/2588-1086/VNUCSCE.228","DOIUrl":null,"url":null,"abstract":"Aligning protein-protein interaction networks from different species is a useful mechanism for figuring out orthologous proteins, predicting/verifying protein unknown functions or constructing evolutionary relationships. The network alignment problem is proved to be NP-hard, requiring exponential-time algorithms, which is not feasible for the fast growth of biological data. In this paper, we present a novel protein-protein interaction global network alignment algorithm, which is enhanced with an extended large neighborhood search heuristics. Evaluated on benchmark datasets of yeast, fly, human and worm, the proposed algorithm outperforms state-of-the-art. Furthermore, the complexity of ours is polynomial, thus being scalable to large biological networks in practice. \nKeywords \nHeuristic, Protein-protein interaction networks, network alignment, neighborhood search \nReferences \n[1] R.L. Finley, R. Brent, Interaction mating reveals binary and ternary connections between drosophila cell cycle regulators. Proc. Natl Acad. Sci. USA. 91 (1994) 12980-12984.[2] R. Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature. 422 (2003) 198-207.[3] C.S. Goh, F.R. Cohen, Co-evolutionary analysis reveals insights into protein-protein interactions, J. Mol. Biol. 324 (2002) 177-192.[4] J.D. Han et al, Evidence for dynamically organized modularity in the yeast proteinprotein interaction network, Nature. 430 (2004) 88-93.[5] G.D. Bader, C.W. Hogue, Analyzing yeast protein-protein interaction data obtained from different sources, Nat. Biotechnol. 20 (2002) 991-997.[6] H.B. Hunter et al, Evolutionary rate in the protein interaction network, Science. 296 (2002) 750-752.[7] J. Dutkowski, J. Tiuryn,J, Identification of functional modules from conserved ancestral protein-protein interactions, Bioinformatics. 23 (2007) i149-i158.[8] B.P. Kelley et al, Conserved pathways within bacteria and yeast as revealed by global protein network alignment, Proc. Natl Acad. Sci. USA. 100 (2003) 11394-11399.[9] O. Kuchaiev, N. Przˇ ulj, Integrative network alignment reveals large regions of global network similarity in yeast and human, Bioinformatics. 27 (2011) 1390-1396.[10] M. Remm et al, Automatic clustering of orthologs and in-paralogs from pairwise species comparisons, J. Mol. Biol. 314 (2001) 1041-1052. [11] L. Chindelevitch et al, Local optimization for global alignment of protein interaction networks, In: Pacific Symposium on Biocomputing, Hawaii, USA, 2010, pp. 123-132.[12] E. hmet, Aladağ, Cesim Erten, SPINAL: scalable protein interaction network alignment, Bioinformatics. Volume 29(7) (2013) 917-924. https://doi.org/10.1093/bioinformatics/btt071.[13] B.P. Kelley et al, Pathblast: a tool for alignment of protein interaction networks, Nucleic Acids Res. 32 (2004) 83-88.[14] R. Sharan et al, Conserved patterns of protein interaction in multiple species, Proc. Natl Acad. Sci. USA. 102 (2005) 1974-1979.[15] M. Koyuturk et al, Pairwise alignment of protein interaction networks, J. Comput. Biol. 13 (2006) 182-199.[16] M. Narayanan, R.M. Karp, Comparing protein interaction networks via a graph match-and-split algorithm, J. Comput. Biol. 14 (2007) 892-907.[17] J. Flannick et al, Graemlin: general and robust alignment of multiple large interaction networks, Genome Res. 16 (2006) 1169-1181.[18] R. Singh et al, Global alignment of multiple protein interaction networks. In: Pacific Symposium on Biocomputing, 2008, pp. 303-314.[19] M. Zaslavskiy et al, Global alignment of protein-protein interaction networks by graph matching methods, Bioinformatics. 25 (2009) 259-267.[20] L. Chindelevitch, Extracting information from biological networks. PhD Thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 2010.[21] Do Duc Dong et al, An efficient algorithm for global alignment of protein-protein interaction networks, Proceeding of ATC15, 2015, pp. 332-336.[22] S. Ropke, D. Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows. Transportation Science. 40 (2006) 455-472. https:// doi.org/10.1287/trsc.1050.0135.[23] P. Shaw, A new local search algorithm providing high quality solutions to vehicle routing problems, Technical report, Department of Computer Science, University of Strathclyde, Scotland, 1997.[24] Roman Lutz, Adaptive Large Neighborhood Search, Bachelor thesis, Ulm University, 2014.[25] M.A. Trick, A linear relaxation heuristic for the generalized assignment prob-lem, Naval Research Logistics. 39 (1992) 137-151.[26] J.Y. Potvin, M. Rousseau, Parallel Route Building Algorithm for the Vehicle Routing and Scheduling Problem with Time Windows, European Journal of Operational Research. 66(3) (1993) pp. 331-340.[27] https://www.researchgate.net/figure/Network-alignment-a-A-dashed-arrow-from-a-node-i-V1-from-the-first-network-G1-V1-E_fig1_24017968[28] J.M. Peter, Van Laarhoven, H.L. Emile, Aarts. Simulated annealing. Springer, 1987.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/VNUCSCE.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aligning protein-protein interaction networks from different species is a useful mechanism for figuring out orthologous proteins, predicting/verifying protein unknown functions or constructing evolutionary relationships. The network alignment problem is proved to be NP-hard, requiring exponential-time algorithms, which is not feasible for the fast growth of biological data. In this paper, we present a novel protein-protein interaction global network alignment algorithm, which is enhanced with an extended large neighborhood search heuristics. Evaluated on benchmark datasets of yeast, fly, human and worm, the proposed algorithm outperforms state-of-the-art. Furthermore, the complexity of ours is polynomial, thus being scalable to large biological networks in practice. Keywords Heuristic, Protein-protein interaction networks, network alignment, neighborhood search References [1] R.L. Finley, R. Brent, Interaction mating reveals binary and ternary connections between drosophila cell cycle regulators. Proc. Natl Acad. Sci. USA. 91 (1994) 12980-12984.[2] R. Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature. 422 (2003) 198-207.[3] C.S. Goh, F.R. Cohen, Co-evolutionary analysis reveals insights into protein-protein interactions, J. Mol. Biol. 324 (2002) 177-192.[4] J.D. Han et al, Evidence for dynamically organized modularity in the yeast proteinprotein interaction network, Nature. 430 (2004) 88-93.[5] G.D. Bader, C.W. Hogue, Analyzing yeast protein-protein interaction data obtained from different sources, Nat. Biotechnol. 20 (2002) 991-997.[6] H.B. Hunter et al, Evolutionary rate in the protein interaction network, Science. 296 (2002) 750-752.[7] J. Dutkowski, J. Tiuryn,J, Identification of functional modules from conserved ancestral protein-protein interactions, Bioinformatics. 23 (2007) i149-i158.[8] B.P. Kelley et al, Conserved pathways within bacteria and yeast as revealed by global protein network alignment, Proc. Natl Acad. Sci. USA. 100 (2003) 11394-11399.[9] O. Kuchaiev, N. Przˇ ulj, Integrative network alignment reveals large regions of global network similarity in yeast and human, Bioinformatics. 27 (2011) 1390-1396.[10] M. Remm et al, Automatic clustering of orthologs and in-paralogs from pairwise species comparisons, J. Mol. Biol. 314 (2001) 1041-1052. [11] L. Chindelevitch et al, Local optimization for global alignment of protein interaction networks, In: Pacific Symposium on Biocomputing, Hawaii, USA, 2010, pp. 123-132.[12] E. hmet, Aladağ, Cesim Erten, SPINAL: scalable protein interaction network alignment, Bioinformatics. Volume 29(7) (2013) 917-924. https://doi.org/10.1093/bioinformatics/btt071.[13] B.P. Kelley et al, Pathblast: a tool for alignment of protein interaction networks, Nucleic Acids Res. 32 (2004) 83-88.[14] R. Sharan et al, Conserved patterns of protein interaction in multiple species, Proc. Natl Acad. Sci. USA. 102 (2005) 1974-1979.[15] M. Koyuturk et al, Pairwise alignment of protein interaction networks, J. Comput. Biol. 13 (2006) 182-199.[16] M. Narayanan, R.M. Karp, Comparing protein interaction networks via a graph match-and-split algorithm, J. Comput. Biol. 14 (2007) 892-907.[17] J. Flannick et al, Graemlin: general and robust alignment of multiple large interaction networks, Genome Res. 16 (2006) 1169-1181.[18] R. Singh et al, Global alignment of multiple protein interaction networks. In: Pacific Symposium on Biocomputing, 2008, pp. 303-314.[19] M. Zaslavskiy et al, Global alignment of protein-protein interaction networks by graph matching methods, Bioinformatics. 25 (2009) 259-267.[20] L. Chindelevitch, Extracting information from biological networks. PhD Thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 2010.[21] Do Duc Dong et al, An efficient algorithm for global alignment of protein-protein interaction networks, Proceeding of ATC15, 2015, pp. 332-336.[22] S. Ropke, D. Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows. Transportation Science. 40 (2006) 455-472. https:// doi.org/10.1287/trsc.1050.0135.[23] P. Shaw, A new local search algorithm providing high quality solutions to vehicle routing problems, Technical report, Department of Computer Science, University of Strathclyde, Scotland, 1997.[24] Roman Lutz, Adaptive Large Neighborhood Search, Bachelor thesis, Ulm University, 2014.[25] M.A. Trick, A linear relaxation heuristic for the generalized assignment prob-lem, Naval Research Logistics. 39 (1992) 137-151.[26] J.Y. Potvin, M. Rousseau, Parallel Route Building Algorithm for the Vehicle Routing and Scheduling Problem with Time Windows, European Journal of Operational Research. 66(3) (1993) pp. 331-340.[27] https://www.researchgate.net/figure/Network-alignment-a-A-dashed-arrow-from-a-node-i-V1-from-the-first-network-G1-V1-E_fig1_24017968[28] J.M. Peter, Van Laarhoven, H.L. Emile, Aarts. Simulated annealing. Springer, 1987.
自适应大邻域搜索增强了网络全局一致性
比对来自不同物种的蛋白质相互作用网络是发现同源蛋白、预测/验证蛋白质未知功能或构建进化关系的有用机制。网络对齐问题被证明是np困难的,需要指数时间算法,这对于快速增长的生物数据是不可行的。本文提出了一种新的蛋白质-蛋白质相互作用全局网络比对算法,该算法采用扩展的大邻域搜索启发式算法进行增强。在酵母、苍蝇、人类和蠕虫的基准数据集上进行了评估,该算法优于目前最先进的算法。此外,我们的复杂性是多项式的,因此在实践中可以扩展到大型生物网络。参考文献[1]R. l . Finley, R. Brent,相互作用交配揭示果蝇细胞周期调控因子之间的二元和二元联系。自然科学进展。美国。[2] [au:]李晓明,张晓明,王晓明,质谱技术在蛋白质组学研究中的应用,生物医学工程学报,2003,29 (3):387 - 387 .[3]吴志强,郭志强,共同进化分析在蛋白质与蛋白质相互作用中的应用,生物工程学报,2003,24 (4):357 - 357 .[4]韩俊杰等,酵母蛋白相互作用网络的动态组织模块化证据,自然科学进展,43 (2004):88-93.[5]陈志强,刘志强,酵母蛋白相互作用的研究进展,生物工程学报,20 (2002):991-997.[6]H.B. Hunter et al .,蛋白质相互作用网络的进化速率,科学,296 (2002)750-752.[7]王晓明,王晓明,王晓明,等。基因工程中蛋白质互作功能模块的克隆与鉴定,生物工程学报,2009,27 (6):557 - 557 .[8]B.P. Kelley等,细菌和酵母菌的保守通路,全球蛋白质网络比对,Proc. Natl Acad. Sci。美国。[9] [au:]张建军,张建军,张建军,等。酵母与人类基因网络的融合分析,生物信息学,27 (2011):1390-1396.[10]李建军,李建军等。基于生物分类的生物分类方法研究,生物工程学报,2004,27(2):557 - 557。[11]李晓明,张晓明,张晓明,等。蛋白质相互作用网络的局部优化,生物工程学报,2010,pp. 123-132.[12]李建军,李建军,李建军,脊柱:可扩展的蛋白质相互作用网络比对,生物信息学。卷29(7)(2013)917-924。[13]张晓明,张晓明,张晓明,等。蛋白质相互作用网络的研究进展[j] .中国生物医学工程学报,2004,32 (4):888 - 888 .[14]R. Sharan等,多物种蛋白质相互作用的保守模式,国家自然科学学报。美国。102 (2005) 1974-1979.[15]M. Koyuturk等,蛋白质相互作用网络的成对比对,J. Comput。生物学报,13 (2006)182-199.[16]M. Narayanan, R.M. Karp,基于图匹配-分割算法的蛋白质相互作用网络比较,J.计算机学报。生物学报,14 (2007)892-907.[17]J. Flannick等,Graemlin:多大相互作用网络的一般和稳健对齐,基因工程学报,16 (2006):1169-1181.[18]R. Singh等人,多蛋白相互作用网络的全局对齐。[19]中华人民大学学报(自然科学版),2008,pp. 303-314。张晓东,张晓东,张晓东,等。基于图像匹配的蛋白质相互作用网络的全局匹配方法,生物信息学报,25 (2009):259-267.[20]《从生物网络中提取信息》。博士论文,麻省理工学院数学系,剑桥,2010.[21]杜德东等,蛋白质相互作用网络的全局定位算法,生物工程学报,2015,pp. 332-336.[22]S. Ropke, D. Pisinger,一种具有时间窗的自适应大邻域搜索启发式取货问题。交通运输科学,2006(4):455-472。[23]杨晓明,一种基于局部搜索算法的车辆路径问题求解方法,计算机工程学报,1997.[24]罗曼·卢茨,自适应大邻域搜索,学士论文,南京大学,2014.[25]李晓明,杨晓明。基于线性松弛启发式的广义分配问题求解方法,海军研究与物流,39 (1992):137-151.[26]J.Y. Potvin, M. Rousseau,基于时间窗的车辆路径调度问题的并行路径构建算法,运学学报,66(3)(1993)pp. 331-340。[27]王晓明,王晓明。[28]王晓明。模拟退火。施普林格,1987年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信