Robust Adaptive Backstepping Control Design for MIMO Electrically Driven Robot Manipulators Using RBF Neural Network With Disturbance

M. Jamil, Irfan Ahmad, Uraiwan Buatoom
{"title":"Robust Adaptive Backstepping Control Design for MIMO Electrically Driven Robot Manipulators Using RBF Neural Network With Disturbance","authors":"M. Jamil, Irfan Ahmad, Uraiwan Buatoom","doi":"10.1109/ICSEC56337.2022.10049342","DOIUrl":null,"url":null,"abstract":"In this paper, a robust adaptive (RA) radial basis function (RBF) neural network (NN) based backstepping control design is proposed for multi-input multi-output (MIMO) electrically driven robot manipulators (EDRM) with completely unmodeled dynamics, unknown nonlinearities, disturbance, and virtual control inputs. The proposed research methodology guarantees the controller’s resilience even in the presence of parameter changes. The main idea of the backstepping control design is to reduce the error to zero via the use of parameter adjustment rules and a virtual control technique. The recursive backstepping design method treats specific system signals as virtual inputs to smaller subsystems. This novel control strategy guarantees the boundedness of the trajectory tracking error and also weight updates of NN. The key advantage of our control strategy is that it eliminates the requirement for regression matrices, the linear in parameter (LIP) assumption, and an offline learning phase. The results of proposed robust adaptive control methodology with unknown disturbance are compared with conventional proportional-derivative (PD) control scheme, i.e., without backstepping.","PeriodicalId":430850,"journal":{"name":"2022 26th International Computer Science and Engineering Conference (ICSEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC56337.2022.10049342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a robust adaptive (RA) radial basis function (RBF) neural network (NN) based backstepping control design is proposed for multi-input multi-output (MIMO) electrically driven robot manipulators (EDRM) with completely unmodeled dynamics, unknown nonlinearities, disturbance, and virtual control inputs. The proposed research methodology guarantees the controller’s resilience even in the presence of parameter changes. The main idea of the backstepping control design is to reduce the error to zero via the use of parameter adjustment rules and a virtual control technique. The recursive backstepping design method treats specific system signals as virtual inputs to smaller subsystems. This novel control strategy guarantees the boundedness of the trajectory tracking error and also weight updates of NN. The key advantage of our control strategy is that it eliminates the requirement for regression matrices, the linear in parameter (LIP) assumption, and an offline learning phase. The results of proposed robust adaptive control methodology with unknown disturbance are compared with conventional proportional-derivative (PD) control scheme, i.e., without backstepping.
带干扰RBF神经网络的MIMO电驱动机器人鲁棒自适应反步控制设计
针对多输入多输出(MIMO)电动机器人(EDRM)具有完全未建模动力学、未知非线性、干扰和虚拟控制输入的情况,提出了一种基于鲁棒自适应径向基函数(RBF)神经网络(NN)的反步控制设计方法。所提出的研究方法保证了控制器在参数变化情况下的弹性。反步控制设计的主要思想是通过参数调整规则和虚拟控制技术将误差减小到零。递归反推设计方法将特定的系统信号作为较小子系统的虚拟输入。该控制策略既保证了轨迹跟踪误差的有界性,又保证了神经网络的权值更新。我们的控制策略的主要优点是它消除了对回归矩阵、参数线性(LIP)假设和离线学习阶段的要求。将该鲁棒自适应控制方法与传统的比例导数(PD)控制方法(即无反步控制)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信