News Summarization Based on Semantic Similarity Measure

Hui Yu
{"title":"News Summarization Based on Semantic Similarity Measure","authors":"Hui Yu","doi":"10.1109/HIS.2009.43","DOIUrl":null,"url":null,"abstract":"This paper proposed a new method of news summarization based on semantic similarity measure. It used Latent semantic indexing (LSI) to measure sentence similarity, then it used Singular Value Decomposition (SVD) to reduce the dimension of the word-sentence matrix, it used new clustering algorithm to cluster all the sentences. It ordered all the sentences according to their relevant positions in the original document. Experimental result shows that the proposed method can improve the performance of summary.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposed a new method of news summarization based on semantic similarity measure. It used Latent semantic indexing (LSI) to measure sentence similarity, then it used Singular Value Decomposition (SVD) to reduce the dimension of the word-sentence matrix, it used new clustering algorithm to cluster all the sentences. It ordered all the sentences according to their relevant positions in the original document. Experimental result shows that the proposed method can improve the performance of summary.
基于语义相似度度量的新闻摘要
提出了一种基于语义相似度度量的新闻摘要方法。该方法首先利用潜在语义索引(LSI)度量句子的相似度,然后利用奇异值分解(SVD)对词-句矩阵进行降维,最后利用新的聚类算法对所有句子进行聚类。它将所有的句子按照它们在原文件中的相关位置排列。实验结果表明,该方法可以提高摘要的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信