A-GWR: Fast and Accurate Geospatial Inference via Augmented Geographically Weighted Regression

Mohammad Reza Shahneh, Samet Oymak, A. Magdy
{"title":"A-GWR: Fast and Accurate Geospatial Inference via Augmented Geographically Weighted Regression","authors":"Mohammad Reza Shahneh, Samet Oymak, A. Magdy","doi":"10.1145/3474717.3484260","DOIUrl":null,"url":null,"abstract":"Geographically Weighted Regression (GWR) is a seminal technique with rich applications in geospatial data analysis. However, it has critical drawbacks in the age of big data in terms of expressiveness, i.e., predictive power, and scalability. This work proposes Augmented GWR (A-GWR) that alleviates these drawbacks. A-GWR adapts a novel technique, Stateless-MGWR or S-MGWR, that enriches the predictive power by allowing different training data features to influence at different spatial scales. S-MGWR uses a customized black-box optimization approach for discovering optimal parameters in a fast and efficient way. In addition, A-GWR modularly combines S-MGWR with versatile models such as random forest models. Moreover, A-GWR enables scalability by operating on partitioned data to adapt to tight computational budgets. Our extensive experiments on various real and synthetic datasets demonstrate the scalability and accuracy benefits of the proposed techniques over state-of-the-art competitors.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3484260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Geographically Weighted Regression (GWR) is a seminal technique with rich applications in geospatial data analysis. However, it has critical drawbacks in the age of big data in terms of expressiveness, i.e., predictive power, and scalability. This work proposes Augmented GWR (A-GWR) that alleviates these drawbacks. A-GWR adapts a novel technique, Stateless-MGWR or S-MGWR, that enriches the predictive power by allowing different training data features to influence at different spatial scales. S-MGWR uses a customized black-box optimization approach for discovering optimal parameters in a fast and efficient way. In addition, A-GWR modularly combines S-MGWR with versatile models such as random forest models. Moreover, A-GWR enables scalability by operating on partitioned data to adapt to tight computational budgets. Our extensive experiments on various real and synthetic datasets demonstrate the scalability and accuracy benefits of the proposed techniques over state-of-the-art competitors.
A-GWR:基于增强型地理加权回归的快速准确地理空间推断
地理加权回归(GWR)是一种在地理空间数据分析中有着广泛应用的开创性技术。然而,在大数据时代,它在表达能力(即预测能力和可扩展性)方面存在严重缺陷。这项工作提出了增强GWR (A-GWR)来缓解这些缺点。a - gwr采用了一种新的技术,即无状态mgwr或S-MGWR,通过允许不同的训练数据特征在不同的空间尺度上产生影响,从而丰富了预测能力。S-MGWR采用定制的黑盒优化方法,快速有效地发现最优参数。此外,A-GWR还将S-MGWR与随机森林模型等通用模型模块化结合。此外,A-GWR通过对分区数据进行操作来实现可伸缩性,以适应紧张的计算预算。我们在各种真实和合成数据集上的广泛实验表明,与最先进的竞争对手相比,所提出的技术具有可扩展性和准确性方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信