An Intelligent Model to Control Preemption Rate of Instantaneous Request Calls in Networks with Book-Ahead Reservation

I. Ahmad, J. Kamruzzaman, D. Habibi, Farzana Islam
{"title":"An Intelligent Model to Control Preemption Rate of Instantaneous Request Calls in Networks with Book-Ahead Reservation","authors":"I. Ahmad, J. Kamruzzaman, D. Habibi, Farzana Islam","doi":"10.1109/ATNAC.2008.4783348","DOIUrl":null,"url":null,"abstract":"Resource sharing between book-ahead (BA) and instantaneous request (IR) reservation often results in high preemption rate of on-going IR calls. High IR call preemption rate causes interruption to service continuity which is considered as detrimental in a QoS-enabled network. A number of call admission control models have been proposed in literature to reduce the preemption rate of on-going IR calls. Many of these models use a tuning parameter to achieve certain level of preemption rate. This paper presents an artificial neural network (ANN) model to dynamically control the preemption rate of on-going calls in a QoS-enabled network. The model maps network traffic parameters and desired level of preemption rate into appropriate tuning parameter. Once trained, this model can be used to automatically estimate the tuning parameter value necessary to achieve the desired level of preemption rate. Simulation results show that the preemption rate attained by the model closely matches with the target rate.","PeriodicalId":143803,"journal":{"name":"2008 Australasian Telecommunication Networks and Applications Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Australasian Telecommunication Networks and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2008.4783348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Resource sharing between book-ahead (BA) and instantaneous request (IR) reservation often results in high preemption rate of on-going IR calls. High IR call preemption rate causes interruption to service continuity which is considered as detrimental in a QoS-enabled network. A number of call admission control models have been proposed in literature to reduce the preemption rate of on-going IR calls. Many of these models use a tuning parameter to achieve certain level of preemption rate. This paper presents an artificial neural network (ANN) model to dynamically control the preemption rate of on-going calls in a QoS-enabled network. The model maps network traffic parameters and desired level of preemption rate into appropriate tuning parameter. Once trained, this model can be used to automatically estimate the tuning parameter value necessary to achieve the desired level of preemption rate. Simulation results show that the preemption rate attained by the model closely matches with the target rate.
预先预约网络中瞬时请求呼叫抢占率的智能控制模型
预购预约(BA)和瞬时请求预约(IR)之间的资源共享通常会导致正在进行的IR调用的高抢占率。高IR呼叫抢占率会导致业务连续性中断,这在qos支持的网络中被认为是有害的。文献中提出了许多呼叫接纳控制模型来降低正在进行的IR呼叫的抢占率。这些模型中的许多都使用调优参数来实现一定级别的抢占率。提出了一种基于人工神经网络(ANN)的动态控制qos网络中正在进行的呼叫抢占率的模型。该模型将网络流量参数和期望的抢占率水平映射为适当的调优参数。经过训练后,该模型可用于自动估计达到所需抢占率水平所需的调优参数值。仿真结果表明,该模型得到的抢占率与目标抢占率基本吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信