Data-driven logic synthesizer for acceleration of Forward propagation in artificial neural networks

K. Mahmoud, W. E. Smith, Mark Fishkin, Timothy N. Miller
{"title":"Data-driven logic synthesizer for acceleration of Forward propagation in artificial neural networks","authors":"K. Mahmoud, W. E. Smith, Mark Fishkin, Timothy N. Miller","doi":"10.1109/ICCD.2015.7357142","DOIUrl":null,"url":null,"abstract":"We present a tool for automatically generating efficient feed-forward logic for hardware acceleration of artificial neural networks (ANNs). It produces circuitry in the form of synthesizable Verilog code that is optimized based on analyzing training data to minimize the numbers of bits in weights and values, thereby minimizing the number of logic gates in ANN components such as adders and multipliers. For an optimized ANN, different implementation topologies can be generated, including fully pipelined and simple state machines. Additional insights about hardware acceleration for neural networks are also presented. We show the impact of reducing precision relative to floating point and present area, power, delay, throughput, and energy estimates by circuit synthesis.","PeriodicalId":129506,"journal":{"name":"2015 33rd IEEE International Conference on Computer Design (ICCD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 33rd IEEE International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2015.7357142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a tool for automatically generating efficient feed-forward logic for hardware acceleration of artificial neural networks (ANNs). It produces circuitry in the form of synthesizable Verilog code that is optimized based on analyzing training data to minimize the numbers of bits in weights and values, thereby minimizing the number of logic gates in ANN components such as adders and multipliers. For an optimized ANN, different implementation topologies can be generated, including fully pipelined and simple state machines. Additional insights about hardware acceleration for neural networks are also presented. We show the impact of reducing precision relative to floating point and present area, power, delay, throughput, and energy estimates by circuit synthesis.
加速人工神经网络前向传播的数据驱动逻辑合成器
提出了一种自动生成高效前馈逻辑的工具,用于人工神经网络的硬件加速。它以可合成Verilog代码的形式产生电路,该电路基于分析训练数据进行优化,以最小化权重和值中的比特数,从而最小化ANN组件(如加法器和乘法器)中的逻辑门的数量。对于优化的人工神经网络,可以生成不同的实现拓扑,包括完全流水线的和简单的状态机。还介绍了关于神经网络硬件加速的其他见解。我们展示了通过电路合成降低相对于浮点数和当前面积、功率、延迟、吞吐量和能量估计的精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信