Coreference for Discourse Parsing: A Neural Approach

Grigorii Guz, G. Carenini
{"title":"Coreference for Discourse Parsing: A Neural Approach","authors":"Grigorii Guz, G. Carenini","doi":"10.18653/v1/2020.codi-1.17","DOIUrl":null,"url":null,"abstract":"We present preliminary results on investigating the benefits of coreference resolution features for neural RST discourse parsing by considering different levels of coupling of the discourse parser with the coreference resolver. In particular, starting with a strong baseline neural parser unaware of any coreference information, we compare a parser which utilizes only the output of a neural coreference resolver, with a more sophisticated model, where discourse parsing and coreference resolution are jointly learned in a neural multitask fashion. Results indicate that these initial attempts to incorporate coreference information do not boost the performance of discourse parsing in a statistically significant way.","PeriodicalId":332037,"journal":{"name":"Proceedings of the First Workshop on Computational Approaches to Discourse","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Computational Approaches to Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.codi-1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We present preliminary results on investigating the benefits of coreference resolution features for neural RST discourse parsing by considering different levels of coupling of the discourse parser with the coreference resolver. In particular, starting with a strong baseline neural parser unaware of any coreference information, we compare a parser which utilizes only the output of a neural coreference resolver, with a more sophisticated model, where discourse parsing and coreference resolution are jointly learned in a neural multitask fashion. Results indicate that these initial attempts to incorporate coreference information do not boost the performance of discourse parsing in a statistically significant way.
语篇分析的共同参照:一种神经方法
我们通过考虑语篇解析器与共指解析器的不同耦合水平,对共指解析特征在神经RST语篇解析中的优势进行了初步研究。特别是,从一个不知道任何共同参考信息的强大基线神经解析器开始,我们将只利用神经共同参考解析器输出的解析器与一个更复杂的模型进行比较,其中话语解析和共同参考解析以神经多任务方式共同学习。结果表明,这些纳入共指信息的初步尝试并没有以统计显著的方式提高语篇分析的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信