Dynamic state estimation and parameter calibration of a DFIG using the ensemble Kalman filter

Rui Fan, Zhenyu Huang, Shaobu Wang, R. Diao, Da Meng
{"title":"Dynamic state estimation and parameter calibration of a DFIG using the ensemble Kalman filter","authors":"Rui Fan, Zhenyu Huang, Shaobu Wang, R. Diao, Da Meng","doi":"10.1109/PESGM.2015.7285990","DOIUrl":null,"url":null,"abstract":"With the growing interest in the application of wind energy, doubly fed induction generators (DFIG) play an increasingly essential role in the power industry. It has been well recognized that modeling and monitoring the dynamic behavior of DFIGs are important to ensure power system reliability. Real-time estimation of the dynamic states of a DFIG is possible with high-speed measurements. But how to use such measurements to have high-quality estimation remains to be a challenge. Estimating dynamic states relies on a good dynamic model of the DFIG. Building a high-fidelity model is a problem in tandem with the dynamic state estimation problem. In this paper, we propose an ensemble Kalman filter (EnKF)-based method for the state estimation and parameter calibration of a DFIG. The mathematical formulation of state estimation combining with parameter estimation is presented. Simulation cases were studied to demonstrate the accuracy of both dynamic state estimation and parameter estimation. Sensitivity analysis is performed with respect to the measurement noise, initial state errors and parameter errors. The results indicate this EnKF-based method has a robust performance on the state estimation and parameter calibration of a DFIG.","PeriodicalId":423639,"journal":{"name":"2015 IEEE Power & Energy Society General Meeting","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2015.7285990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

With the growing interest in the application of wind energy, doubly fed induction generators (DFIG) play an increasingly essential role in the power industry. It has been well recognized that modeling and monitoring the dynamic behavior of DFIGs are important to ensure power system reliability. Real-time estimation of the dynamic states of a DFIG is possible with high-speed measurements. But how to use such measurements to have high-quality estimation remains to be a challenge. Estimating dynamic states relies on a good dynamic model of the DFIG. Building a high-fidelity model is a problem in tandem with the dynamic state estimation problem. In this paper, we propose an ensemble Kalman filter (EnKF)-based method for the state estimation and parameter calibration of a DFIG. The mathematical formulation of state estimation combining with parameter estimation is presented. Simulation cases were studied to demonstrate the accuracy of both dynamic state estimation and parameter estimation. Sensitivity analysis is performed with respect to the measurement noise, initial state errors and parameter errors. The results indicate this EnKF-based method has a robust performance on the state estimation and parameter calibration of a DFIG.
基于集成卡尔曼滤波的DFIG动态估计与参数定标
随着人们对风能应用的日益关注,双馈感应发电机(DFIG)在电力工业中发挥着越来越重要的作用。对DFIGs的动态行为进行建模和监测对于保证电力系统的可靠性具有重要意义。通过高速测量可以实时估计DFIG的动态状态。但是如何使用这样的度量来获得高质量的估计仍然是一个挑战。动态状态的估计依赖于DFIG良好的动态模型。建立高保真模型是一个与动态状态估计问题并行的问题。本文提出了一种基于集成卡尔曼滤波(EnKF)的DFIG状态估计和参数定标方法。给出了状态估计与参数估计相结合的数学公式。通过仿真实例验证了动态估计和参数估计的准确性。对测量噪声、初始状态误差和参数误差进行了灵敏度分析。结果表明,基于enkf的方法对DFIG的状态估计和参数标定具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信