Asynchronous self-adjustable island genetic algorithm for multi-objective optimization problems

Zhong-Yao Zhu, K. Leung
{"title":"Asynchronous self-adjustable island genetic algorithm for multi-objective optimization problems","authors":"Zhong-Yao Zhu, K. Leung","doi":"10.1109/CEC.2002.1007034","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new algorithm-asynchronous self-adjustable island genetic algorithm (aSAIGA) for multi-objective optimization problems. The proposed algorithm is built upon the coarse-grained architecture, which is divided into sub-processes and distributed amongst several island processors. In each sub-process, an asynchronous communication operation and a self-adjusting operation are adopted to enhance the algorithm in both speedup and global searching capabilities. Satisfactory results and significant speedup can be achieved by aSAIGA, as shown by simulation.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1007034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we present a new algorithm-asynchronous self-adjustable island genetic algorithm (aSAIGA) for multi-objective optimization problems. The proposed algorithm is built upon the coarse-grained architecture, which is divided into sub-processes and distributed amongst several island processors. In each sub-process, an asynchronous communication operation and a self-adjusting operation are adopted to enhance the algorithm in both speedup and global searching capabilities. Satisfactory results and significant speedup can be achieved by aSAIGA, as shown by simulation.
多目标优化问题的异步自调节岛遗传算法
本文提出了一种求解多目标优化问题的新算法——异步自调节岛遗传算法(aSAIGA)。该算法建立在粗粒度体系结构之上,该体系结构被划分为子进程并分布在多个孤岛处理器中。在每个子过程中,采用异步通信运算和自调整运算,增强了算法的加速能力和全局搜索能力。仿真结果表明,采用aSAIGA可以获得满意的结果和显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信