Modeling and simulation using finite element method of MEMS based micro pressure sensor

N. Medjahdi, N. Benmoussa
{"title":"Modeling and simulation using finite element method of MEMS based micro pressure sensor","authors":"N. Medjahdi, N. Benmoussa","doi":"10.1109/NAWDMPV.2014.6997595","DOIUrl":null,"url":null,"abstract":"MEMS are systems of small size, light weight, enhanced performance and reliability finding widest of applications in sectors of Automotive, instrumentation and environment area, especially in aspects of weather monitoring and forecast. Nowadays it has become common for scientist and engineers working in micro-electro mechanical system area to simulate the structure using simulation software like COMSOL before actual fabrication. The software helps to create the structure, mesh it and then simulate. In this paper we have modeled and simulated the micro pressure sensor wish can be used to determine the environment pressure with for example piezoresistive detection. The analysis is carried out for different parameters. In this work we need to study the stress repartition on the Silicon membrane surface. This study is very important because it allows us to determinate where the stress is maximal and to place there the four piezoresistors, wish provides a maximal sensitivity to the pressure. Differing from traditional silicon piezoresistive pressure sensor, we use platinum piezoresistive pressure sensor, in wish platinium is used as the piezoresistor material of pressure sensor. We use platinium as the sensing material of pressure sensor to simplify the fabrication process to integrate pressure sensor into for example multisensor for micro wheather station.","PeriodicalId":149945,"journal":{"name":"2014 North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAWDMPV.2014.6997595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MEMS are systems of small size, light weight, enhanced performance and reliability finding widest of applications in sectors of Automotive, instrumentation and environment area, especially in aspects of weather monitoring and forecast. Nowadays it has become common for scientist and engineers working in micro-electro mechanical system area to simulate the structure using simulation software like COMSOL before actual fabrication. The software helps to create the structure, mesh it and then simulate. In this paper we have modeled and simulated the micro pressure sensor wish can be used to determine the environment pressure with for example piezoresistive detection. The analysis is carried out for different parameters. In this work we need to study the stress repartition on the Silicon membrane surface. This study is very important because it allows us to determinate where the stress is maximal and to place there the four piezoresistors, wish provides a maximal sensitivity to the pressure. Differing from traditional silicon piezoresistive pressure sensor, we use platinum piezoresistive pressure sensor, in wish platinium is used as the piezoresistor material of pressure sensor. We use platinium as the sensing material of pressure sensor to simplify the fabrication process to integrate pressure sensor into for example multisensor for micro wheather station.
基于MEMS的微压力传感器的有限元建模与仿真
MEMS是一种体积小,重量轻,性能和可靠性高的系统,在汽车,仪器仪表和环境领域,特别是在天气监测和预报方面有着广泛的应用。目前,在微电子机械系统领域工作的科学家和工程师在实际制造前使用COMSOL等仿真软件对结构进行仿真已经成为一种普遍的做法。软件帮助创建结构,网格化,然后模拟。本文对可用于环境压力测定的微压力传感器进行了建模和仿真,如压阻检测。对不同的参数进行了分析。在这项工作中,我们需要研究硅膜表面的应力重分配。这项研究非常重要,因为它使我们能够确定应力最大的位置,并将四个压敏电阻放置在那里,wish提供了对压力的最大灵敏度。与传统的硅压阻式压力传感器不同,我们采用铂压阻式压力传感器,即铂作为压力传感器的压阻材料。我们使用铂作为压力传感器的传感材料,以简化制造工艺,将压力传感器集成到微型气象站的多传感器中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信