Critical time for the observability of Kolmogorov-type equations

J'er'emi Dard'e, Julien Royer
{"title":"Critical time for the observability of Kolmogorov-type equations","authors":"J'er'emi Dard'e, Julien Royer","doi":"10.5802/jep.160","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the observability of a class of two-dimensional Kolmogorov-type equations presenting a quadratic degeneracy. We give lower and upper bounds for the critical time. These bounds coincide in symmetric settings, giving a sharp result in these cases. The proof is based on Carleman estimates and on the spectral properties of a family of non-selfadjoint Schrodinger operators, in particular the localization of the first eigenvalue and Agmon type estimates for the corresponding eigenfunctions.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is devoted to the observability of a class of two-dimensional Kolmogorov-type equations presenting a quadratic degeneracy. We give lower and upper bounds for the critical time. These bounds coincide in symmetric settings, giving a sharp result in these cases. The proof is based on Carleman estimates and on the spectral properties of a family of non-selfadjoint Schrodinger operators, in particular the localization of the first eigenvalue and Agmon type estimates for the corresponding eigenfunctions.
柯尔莫哥洛夫型方程可观测性的临界时间
研究了一类具有二次退化的二维kolmogorov型方程的可观测性。给出了临界时间的下界和上界。这些边界在对称情况下重合,在这些情况下得到一个明显的结果。该证明基于Carleman估计和非自伴随薛定谔算子族的谱性质,特别是第一特征值的局域化和相应特征函数的Agmon型估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信