Efficient Processing of Spatio-Temporal-Textual Queries

Daniel C. Andrade, João B. Rocha-Junior, D. G. Costa
{"title":"Efficient Processing of Spatio-Temporal-Textual Queries","authors":"Daniel C. Andrade, João B. Rocha-Junior, D. G. Costa","doi":"10.1145/3126858.3126877","DOIUrl":null,"url":null,"abstract":"Devices with built-in GPS (e.g. smartphones) are producing a huge amount of data objects with spatial, temporal and textual information. For example, a significant part of Twitter messages sent from smartphones has spatial location (latitude and longitude), temporal information (timestamp) and textual information (the message itself). Therefore, there is a growing interest for new approaches that are able to select the data objects that are spatially, temporally and textually relevant from huge datasets. In this paper, we specify the spatio-temporal-textual query that returns the relevant data objects considering these three criteria simultaneously, presenting new indexes and algorithms to process such query efficiently. The proposed approaches are evaluated taking real datasets, potentially providing more accurate results.","PeriodicalId":338362,"journal":{"name":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126858.3126877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Devices with built-in GPS (e.g. smartphones) are producing a huge amount of data objects with spatial, temporal and textual information. For example, a significant part of Twitter messages sent from smartphones has spatial location (latitude and longitude), temporal information (timestamp) and textual information (the message itself). Therefore, there is a growing interest for new approaches that are able to select the data objects that are spatially, temporally and textually relevant from huge datasets. In this paper, we specify the spatio-temporal-textual query that returns the relevant data objects considering these three criteria simultaneously, presenting new indexes and algorithms to process such query efficiently. The proposed approaches are evaluated taking real datasets, potentially providing more accurate results.
时空文本查询的高效处理
内置GPS的设备(如智能手机)正在产生大量具有空间、时间和文本信息的数据对象。例如,从智能手机发送的Twitter消息中有很大一部分具有空间位置(纬度和经度)、时间信息(时间戳)和文本信息(消息本身)。因此,人们对能够从巨大的数据集中选择空间、时间和文本相关的数据对象的新方法越来越感兴趣。在本文中,我们指定了同时考虑这三个标准返回相关数据对象的时空文本查询,并提出了新的索引和算法来高效地处理这类查询。采用真实数据集对所提出的方法进行了评估,可能提供更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信