An unsupervised symmetric tensor network for change detection in multitemporal hyperspectral images

Cheng Liang, Zhao Chen
{"title":"An unsupervised symmetric tensor network for change detection in multitemporal hyperspectral images","authors":"Cheng Liang, Zhao Chen","doi":"10.1117/12.2664567","DOIUrl":null,"url":null,"abstract":"Since Hyperspectral images (HSIs) contain a large amount of spectral information, they can provide detailed spectral information and enable accurate CD. However, the spectral heterogeneity of HSIs may lead to false alarms which will reduce detection accuracy. Additionally, it is difficult to collect and annotate pixel-level labels for CD in HSIs. Therefore, we propose an unsupervised symmetric tensor network (USTN) for HSIs CD. We design a novel multidimensional symmetric tensor framework to solve the problem of high-dimensional data processing. Furthermore, the framework integrates a spatial edge loss to preserve detailed spectral-spatial information. Finally, we use feature fusion to suppress the invariant components (i.e., the background) and highlight the variant components (i.e., temporal changes). Experiments on two sets of multitemporal HSIs, Hermiston and Bay Area, demonstrate the effectiveness of USTN for binary change detection.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space From Infrared to Terahertz (ESIT 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2664567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since Hyperspectral images (HSIs) contain a large amount of spectral information, they can provide detailed spectral information and enable accurate CD. However, the spectral heterogeneity of HSIs may lead to false alarms which will reduce detection accuracy. Additionally, it is difficult to collect and annotate pixel-level labels for CD in HSIs. Therefore, we propose an unsupervised symmetric tensor network (USTN) for HSIs CD. We design a novel multidimensional symmetric tensor framework to solve the problem of high-dimensional data processing. Furthermore, the framework integrates a spatial edge loss to preserve detailed spectral-spatial information. Finally, we use feature fusion to suppress the invariant components (i.e., the background) and highlight the variant components (i.e., temporal changes). Experiments on two sets of multitemporal HSIs, Hermiston and Bay Area, demonstrate the effectiveness of USTN for binary change detection.
多时相高光谱图像变化检测的无监督对称张量网络
由于高光谱图像包含大量的光谱信息,可以提供详细的光谱信息,实现精确的CD,但高光谱图像的光谱非均匀性可能导致误报,从而降低检测精度。此外,在hsi中很难收集和注释CD的像素级标签。因此,我们提出了一种用于hsi CD的无监督对称张量网络(USTN)。我们设计了一种新的多维对称张量框架来解决高维数据处理问题。此外,该框架集成了空间边缘损失,以保留详细的光谱空间信息。最后,我们使用特征融合来抑制不变成分(即背景)并突出可变成分(即时间变化)。在Hermiston和Bay Area两组多时相hsi上的实验验证了usn对二元变化检测的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信