Learning non-linear ranking functions for web search using probabilistic model building GP

Hiroyuki Sato, Danushka Bollegala, Yoshihiko Hasegawa, H. Iba
{"title":"Learning non-linear ranking functions for web search using probabilistic model building GP","authors":"Hiroyuki Sato, Danushka Bollegala, Yoshihiko Hasegawa, H. Iba","doi":"10.1109/CEC.2013.6557983","DOIUrl":null,"url":null,"abstract":"Ranking the set of search results according to their relevance to a user query is an important task in an Information Retrieval (IR) systems such as a Web Search Engine. Learning the optimal ranking function for this task is a challenging problem because one must consider complex non-linear interactions between numerous factors such as the novelty, authority, contextual similarity, etc. of thousands of documents that contain the user query. We model this task as a non-linear ranking problem, for which we propose Rank-PMBGP, an efficient algorithm to learn an optimal non-linear ranking function using Probabilistic Model Building Genetic Programming. We evaluate the proposed method using the LETOR dataset, a standard benchmark dataset for training and evaluating ranking functions for IR. In our experiments, the proposed method obtains a Mean Average Precision (MAP) score of 0.291, thereby significantly outperforming a non-linear baseline approach that uses Genetic Programming.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Ranking the set of search results according to their relevance to a user query is an important task in an Information Retrieval (IR) systems such as a Web Search Engine. Learning the optimal ranking function for this task is a challenging problem because one must consider complex non-linear interactions between numerous factors such as the novelty, authority, contextual similarity, etc. of thousands of documents that contain the user query. We model this task as a non-linear ranking problem, for which we propose Rank-PMBGP, an efficient algorithm to learn an optimal non-linear ranking function using Probabilistic Model Building Genetic Programming. We evaluate the proposed method using the LETOR dataset, a standard benchmark dataset for training and evaluating ranking functions for IR. In our experiments, the proposed method obtains a Mean Average Precision (MAP) score of 0.291, thereby significantly outperforming a non-linear baseline approach that uses Genetic Programming.
利用概率模型构建GP学习网络搜索的非线性排序函数
根据搜索结果与用户查询的相关性对搜索结果进行排序是信息检索(IR)系统(如Web搜索引擎)中的一项重要任务。学习这个任务的最优排序函数是一个具有挑战性的问题,因为必须考虑许多因素之间复杂的非线性交互,例如包含用户查询的数千个文档的新颖性、权威性、上下文相似性等。我们将此任务建模为非线性排序问题,为此我们提出了Rank-PMBGP算法,这是一种使用概率模型构建遗传规划学习最优非线性排序函数的有效算法。我们使用LETOR数据集(一个用于训练和评估IR排名函数的标准基准数据集)来评估所提出的方法。在我们的实验中,该方法的平均精度(MAP)得分为0.291,从而显著优于使用遗传规划的非线性基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信