{"title":"CHAPTER 13. Challenges and Opportunities in Lithium-ion Battery Supply","authors":"Wolfgang Bernhart","doi":"10.1039/9781788016124-00316","DOIUrl":null,"url":null,"abstract":"The demand for batteries from the automotive industry sector is the main driver for the future lithium-ion battery market. The cell manufacturing market is dominated by a few large players from Asia, with China getting more important. Cell costs will level out around €75 kWh−1 in the second half of the next decade. Increased volumetric energy density is the main cost reduction lever, but manufacturing processes will also provide further cost reduction opportunities. In that context, for solid state technology to be successful in automotive application, it must fulfil all important performance requirements such as fast charging capabilities, long cycle life and safety, while being significantly cheaper. Process technology development will scale volume of cathode active material processing units, causing a severe cost disadvantage risk to small sized players. Overall, demand for (battery-grade) nickel, cobalt and lithium will increase significantly. Therefore price risks due to high concentration levels for raw and refined materials and political country risks need to be mitigated, but supply shortages are unlikely. As a consequence recycling is getting increasingly important—from a cost perspective, as well as from the perspective of securing raw material supply.","PeriodicalId":366270,"journal":{"name":"Future Lithium-ion Batteries","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Lithium-ion Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016124-00316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The demand for batteries from the automotive industry sector is the main driver for the future lithium-ion battery market. The cell manufacturing market is dominated by a few large players from Asia, with China getting more important. Cell costs will level out around €75 kWh−1 in the second half of the next decade. Increased volumetric energy density is the main cost reduction lever, but manufacturing processes will also provide further cost reduction opportunities. In that context, for solid state technology to be successful in automotive application, it must fulfil all important performance requirements such as fast charging capabilities, long cycle life and safety, while being significantly cheaper. Process technology development will scale volume of cathode active material processing units, causing a severe cost disadvantage risk to small sized players. Overall, demand for (battery-grade) nickel, cobalt and lithium will increase significantly. Therefore price risks due to high concentration levels for raw and refined materials and political country risks need to be mitigated, but supply shortages are unlikely. As a consequence recycling is getting increasingly important—from a cost perspective, as well as from the perspective of securing raw material supply.