Wen Liu, M. Matsuoka, B. Adriano, E. Mas, S. Koshimura
{"title":"Damage detection due to the typhoon haiyan from high-resolution SAR images","authors":"Wen Liu, M. Matsuoka, B. Adriano, E. Mas, S. Koshimura","doi":"10.1109/IGARSS.2014.6947575","DOIUrl":null,"url":null,"abstract":"A strong typhoon “Haiyan” affected Southeast Asia on November 8, 2013, caused gigantic destruction in the Philippines. In this study, two pre- and one post-event COSMO-SkyMed SCSB data were used to detect the damaged area around Tacloban City, Leyte Island. First, the severe damaged areas were detected according to the difference between the pre- and post-event speckle divergence values. Then the pre- and co-event coherence (NDCI) and correlation coefficient (NDCOI) were calculated from the three temporal data. The relationships between the four building damage levels and NDCI or NDCOI value were obtained by introducing the visual interoperation result. Using this relationship, the possibility of each damage class was estimated in the whole urban area.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6947575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A strong typhoon “Haiyan” affected Southeast Asia on November 8, 2013, caused gigantic destruction in the Philippines. In this study, two pre- and one post-event COSMO-SkyMed SCSB data were used to detect the damaged area around Tacloban City, Leyte Island. First, the severe damaged areas were detected according to the difference between the pre- and post-event speckle divergence values. Then the pre- and co-event coherence (NDCI) and correlation coefficient (NDCOI) were calculated from the three temporal data. The relationships between the four building damage levels and NDCI or NDCOI value were obtained by introducing the visual interoperation result. Using this relationship, the possibility of each damage class was estimated in the whole urban area.