A. Vizitiu, L. Itu, Ranveer Joyseeree, A. Depeursinge, H. Müller, C. Suciu
{"title":"GPU-Accelerated Texture Analysis Using Steerable Riesz Wavelets","authors":"A. Vizitiu, L. Itu, Ranveer Joyseeree, A. Depeursinge, H. Müller, C. Suciu","doi":"10.1109/PDP.2016.105","DOIUrl":null,"url":null,"abstract":"Visual pattern recognition is a key research topic in the field of image processing and computer vision. Texture analysis based on steerable Riesz wavelets is powerful, but requires computing pixel-wise operations resulting in a run time in the order of days when large volumes of data are processed. To overcome this limitation we propose a Graphics Processing Unit (GPU) based solution. A standard CPU version is used as starting point for the development of baseline GPU versions. To further increase the performance, and to overcome compute and memory limitations we apply a series of optimization techniques, leading to five versions in total. The best performing GPU solution ensures a speed-up of 93× for the parallelized section of the application and of 29.6× for the entire application. Furthermore, we show that a higher Riesz order and/or a higher image resolution further increases the speed-up.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Visual pattern recognition is a key research topic in the field of image processing and computer vision. Texture analysis based on steerable Riesz wavelets is powerful, but requires computing pixel-wise operations resulting in a run time in the order of days when large volumes of data are processed. To overcome this limitation we propose a Graphics Processing Unit (GPU) based solution. A standard CPU version is used as starting point for the development of baseline GPU versions. To further increase the performance, and to overcome compute and memory limitations we apply a series of optimization techniques, leading to five versions in total. The best performing GPU solution ensures a speed-up of 93× for the parallelized section of the application and of 29.6× for the entire application. Furthermore, we show that a higher Riesz order and/or a higher image resolution further increases the speed-up.