{"title":"Adaptive neural regulator and its application to torque control of a flexible beam","authors":"B. Xu, T. Tsuji, M. Kaneko","doi":"10.1109/IROS.1996.570678","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive regulator using neural network. For a controlled object with linear and nonlinear uncertainties, the conventional optimal regulator is designed based on a known linear part of the controlled object and the uncertainties included in the controlled object are identified using the neural network. At the same time, the neural network adaptively compensates a control input from the predesigned optimal regulator. In this paper, we show how the output of the neural network compensates the control input based on the Riccati equation, and a sufficient condition of the local asymptotic stability is derived using the Lyapunov stability technique. Then, the proposed regulator is applied to the torque control of a flexible beam. Experimental results under the proposed regulator are compared with the conventional optimal regulator in order to illustrate the effectiveness and applicability of the proposed method.","PeriodicalId":374871,"journal":{"name":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1996.570678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an adaptive regulator using neural network. For a controlled object with linear and nonlinear uncertainties, the conventional optimal regulator is designed based on a known linear part of the controlled object and the uncertainties included in the controlled object are identified using the neural network. At the same time, the neural network adaptively compensates a control input from the predesigned optimal regulator. In this paper, we show how the output of the neural network compensates the control input based on the Riccati equation, and a sufficient condition of the local asymptotic stability is derived using the Lyapunov stability technique. Then, the proposed regulator is applied to the torque control of a flexible beam. Experimental results under the proposed regulator are compared with the conventional optimal regulator in order to illustrate the effectiveness and applicability of the proposed method.