Anomaly Detection in Time Series Radiotherapy Treatment Data

T. Sipes, H. Karimabadi, Steve B. Jiang, K. Moore, Nan Li, Joseph R. Barr
{"title":"Anomaly Detection in Time Series Radiotherapy Treatment Data","authors":"T. Sipes, H. Karimabadi, Steve B. Jiang, K. Moore, Nan Li, Joseph R. Barr","doi":"10.1109/ICSC.2014.64","DOIUrl":null,"url":null,"abstract":"The work presented here resulted in a valuable innovative technology tool for automatic detection of catastrophic errors in cancer radiotherapy, adding an important safeguard for patient safety. We designed a tool for Dynamic Modeling and Prediction of Radiotherapy Treatment Deviations from Intended Plans (Smart Tool) to automatically detect and highlight potential errors in a radiotherapy treatment plan, based on the data from several thousand prostate cancer treatments at Moore Cancer Research Center at University of California San Diego. Smart Tool determines if the treatment parameters are valid, against a previously built Predictive Model of a Medical Error (PMME). Smart Tool has the following main features: 1) It communicates with a radiotherapy treatment management system, checking all the treatment parameters in the background prior to execution, and after the human expert QA is completed, 2) The anomalous treatment parameters, if any, are detected using an innovative intelligent algorithm in a completely automatic and unsupervised manner, 3) It is a self-learning and constantly evolving system, the model is dynamically updated with the new treatment data, 4) It incorporates expert knowledge through the feedback loop of the dynamic process which updates the model with any new false positives (FP) and false negatives (FN), 4) When an outlier treatment parameter is detected, Smart Tool works by preventing the plan execution and highlighting the parameter for human intervention, 5) It is aimed at catastrophic errors, not small errors.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work presented here resulted in a valuable innovative technology tool for automatic detection of catastrophic errors in cancer radiotherapy, adding an important safeguard for patient safety. We designed a tool for Dynamic Modeling and Prediction of Radiotherapy Treatment Deviations from Intended Plans (Smart Tool) to automatically detect and highlight potential errors in a radiotherapy treatment plan, based on the data from several thousand prostate cancer treatments at Moore Cancer Research Center at University of California San Diego. Smart Tool determines if the treatment parameters are valid, against a previously built Predictive Model of a Medical Error (PMME). Smart Tool has the following main features: 1) It communicates with a radiotherapy treatment management system, checking all the treatment parameters in the background prior to execution, and after the human expert QA is completed, 2) The anomalous treatment parameters, if any, are detected using an innovative intelligent algorithm in a completely automatic and unsupervised manner, 3) It is a self-learning and constantly evolving system, the model is dynamically updated with the new treatment data, 4) It incorporates expert knowledge through the feedback loop of the dynamic process which updates the model with any new false positives (FP) and false negatives (FN), 4) When an outlier treatment parameter is detected, Smart Tool works by preventing the plan execution and highlighting the parameter for human intervention, 5) It is aimed at catastrophic errors, not small errors.
放射治疗时间序列数据的异常检测
本文的研究成果为癌症放射治疗中灾难性错误的自动检测提供了一种有价值的创新技术工具,为患者安全提供了重要保障。基于加州大学圣地亚哥分校摩尔癌症研究中心数千例前列腺癌治疗的数据,我们设计了一个用于放射治疗偏离预期计划的动态建模和预测工具(智能工具),以自动检测和突出放射治疗计划中的潜在错误。智能工具根据先前构建的医疗错误预测模型(PMME)确定治疗参数是否有效。智能工具具有以下主要特性:1)与放疗治疗管理系统通信,在执行前在后台检查所有治疗参数,并在人类专家QA完成后;2)使用创新的智能算法,以完全自动和无监督的方式检测异常治疗参数;3)它是一个自学习和不断进化的系统,模型随着新的治疗数据动态更新;4)它通过动态过程的反馈回路结合专家知识,该反馈回路用任何新的假阳性(FP)和假阴性(FN)更新模型,4)当检测到异常值处理参数时,智能工具通过阻止计划执行并突出显示人工干预参数来工作,5)它针对的是灾难性错误,而不是小错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信