Using a Two-Stage HOG-SVM / CNN Model to Identify and Classify Forms of Brown Planthoppers

Christopher G. Harris, I. Andika, Y. Trisyono
{"title":"Using a Two-Stage HOG-SVM / CNN Model to Identify and Classify Forms of Brown Planthoppers","authors":"Christopher G. Harris, I. Andika, Y. Trisyono","doi":"10.1109/IATMSI56455.2022.10119374","DOIUrl":null,"url":null,"abstract":"Approximately ten percent of rice crop yields throughout the Asia-Pacific region are reduced due to pests called brown planthoppers (BPH). We use a two-stage model to identify BPH from rice crop images and use these to determine the form of each BPH in the image, which has implications for predicting potential BPH outbreaks. Using a unique form of concentric Histograms of Oriented Gradient (HOG) descriptors and SVM classifiers, we can obtain to identify BPH with a recall of 96.56% and an FDR (false detection rate) of 2.91%, surpassing other efforts on similar datasets. Applying a VGG-19 CNN architecture, we achieved a classification accuracy of 92.76%for the three BPH forms. These outcomes provide a foundation for other efforts in pest identification and insect lifecycle detection.","PeriodicalId":221211,"journal":{"name":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IATMSI56455.2022.10119374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Approximately ten percent of rice crop yields throughout the Asia-Pacific region are reduced due to pests called brown planthoppers (BPH). We use a two-stage model to identify BPH from rice crop images and use these to determine the form of each BPH in the image, which has implications for predicting potential BPH outbreaks. Using a unique form of concentric Histograms of Oriented Gradient (HOG) descriptors and SVM classifiers, we can obtain to identify BPH with a recall of 96.56% and an FDR (false detection rate) of 2.91%, surpassing other efforts on similar datasets. Applying a VGG-19 CNN architecture, we achieved a classification accuracy of 92.76%for the three BPH forms. These outcomes provide a foundation for other efforts in pest identification and insect lifecycle detection.
利用两阶段HOG-SVM / CNN模型对褐飞虱进行形态识别和分类
整个亚太地区约有10%的水稻作物产量因褐飞虱(BPH)而减少。我们使用两阶段模型从水稻作物图像中识别BPH,并使用这些模型确定图像中每个BPH的形式,这对预测潜在的BPH爆发具有重要意义。利用一种独特形式的同心圆梯度直方图(HOG)描述符和SVM分类器,我们可以获得BPH识别的召回率为96.56%,FDR(误检率)为2.91%,优于同类数据集上的其他方法。应用VGG-19 CNN架构,我们对三种BPH形式的分类准确率达到92.76%。这些结果为害虫鉴定和昆虫生命周期检测的其他工作提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信