Image restoration via multi-scale non-local total variation regularization

Jing Mu, Ruiqin Xiong, Xiaopeng Fan, Siwei Ma
{"title":"Image restoration via multi-scale non-local total variation regularization","authors":"Jing Mu, Ruiqin Xiong, Xiaopeng Fan, Siwei Ma","doi":"10.1109/ICME.2017.8019463","DOIUrl":null,"url":null,"abstract":"Total-variation (TV) regularization is widely adopted in image restoration problems to exploit the local smoothness of image. However, traditional TV regularization only models the sparsity of image gradient at the original scale. This paper introduces a multi-scale TV regularization method which models the image gradient sparsity at different scales, and constrains the gradient magnitude of different scales jointly. As different scales extract different frequency of image, our proposed multi-scale regularization method provides constraints for different frequency components. And for each scale, we adaptively estimate the gradient distribution at a particular pixel from a group of nonlocally searched similar patches. Finally, experimental results demonstrate that the proposed method outperforms the conventional TV regularization methods for image restoration.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Total-variation (TV) regularization is widely adopted in image restoration problems to exploit the local smoothness of image. However, traditional TV regularization only models the sparsity of image gradient at the original scale. This paper introduces a multi-scale TV regularization method which models the image gradient sparsity at different scales, and constrains the gradient magnitude of different scales jointly. As different scales extract different frequency of image, our proposed multi-scale regularization method provides constraints for different frequency components. And for each scale, we adaptively estimate the gradient distribution at a particular pixel from a group of nonlocally searched similar patches. Finally, experimental results demonstrate that the proposed method outperforms the conventional TV regularization methods for image restoration.
基于多尺度非局部全变差正则化的图像恢复
为了利用图像的局部平滑性,在图像恢复问题中广泛采用全变分正则化方法。然而,传统的电视正则化算法仅对原始尺度下图像梯度的稀疏性进行建模。本文介绍了一种多尺度电视正则化方法,该方法对不同尺度下的图像梯度稀疏度进行建模,并对不同尺度下的梯度大小进行联合约束。由于不同尺度提取的图像频率不同,我们提出的多尺度正则化方法对不同频率分量提供了约束。对于每个尺度,我们从一组非局部搜索的相似斑块中自适应估计特定像素处的梯度分布。实验结果表明,该方法在图像恢复方面优于传统的电视正则化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信