{"title":"Optimal calculation of induction heater capacitance with smart bacteria foraging algorithm","authors":"M. Asadi Z, E. Daryabeigi","doi":"10.1109/OPTIM.2012.6231825","DOIUrl":null,"url":null,"abstract":"In design of a parallel resonant Induction heating system, choosing a proper capacitance for the resonant circuit is quite important. The capacitance affects the resonant frequency, output power, heating efficiency and power factor. In this paper, with consideration to the function of equivalent series resistance (ESR), optimal capacitance is calculated. The induction heating resonance capacitor is achieved by using Smart Bacteria Foraging Algorithm (SBFA) under voltage and frequency constraints for minimizing cost function that is including: increasing the output power, efficiency of an induction heater, while decreasing the power loss of the capacitor. The proposed algorithm mimics chemotactic behavior of E. Coli bacteria to optimize parameters. The proposed algorithm enjoys individual and social intelligence. Based on the equivalent circuit model of an induction heating system, the output power, and the capacitor losses are calculated. The effectiveness of the proposed method is verified by computer simulations, also improving the obtained results using SBFA are compared to classical bacteria foraging algorithm BFA.","PeriodicalId":382406,"journal":{"name":"2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OPTIM.2012.6231825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In design of a parallel resonant Induction heating system, choosing a proper capacitance for the resonant circuit is quite important. The capacitance affects the resonant frequency, output power, heating efficiency and power factor. In this paper, with consideration to the function of equivalent series resistance (ESR), optimal capacitance is calculated. The induction heating resonance capacitor is achieved by using Smart Bacteria Foraging Algorithm (SBFA) under voltage and frequency constraints for minimizing cost function that is including: increasing the output power, efficiency of an induction heater, while decreasing the power loss of the capacitor. The proposed algorithm mimics chemotactic behavior of E. Coli bacteria to optimize parameters. The proposed algorithm enjoys individual and social intelligence. Based on the equivalent circuit model of an induction heating system, the output power, and the capacitor losses are calculated. The effectiveness of the proposed method is verified by computer simulations, also improving the obtained results using SBFA are compared to classical bacteria foraging algorithm BFA.