A New Affine Invariant Curve Normalization Technique Using Independent Component Analysis

Sait Sener, M. Unel
{"title":"A New Affine Invariant Curve Normalization Technique Using Independent Component Analysis","authors":"Sait Sener, M. Unel","doi":"10.1109/ICPR.2006.111","DOIUrl":null,"url":null,"abstract":"A new affine invariant curve normalization method using independent component analysis (ICA) is presented. First, principal component analysis (PCA) is used for translation, scale and shear normalization. ICA and the third order moments are then employed for rotation and reflection normalization. It is shown that all affine transformed versions of an object have a unique or canonical representation. Experiments are conducted to asses the robustness of our approach. Proposed normalization technique can be used as a pre-processing for object modeling and recognition","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new affine invariant curve normalization method using independent component analysis (ICA) is presented. First, principal component analysis (PCA) is used for translation, scale and shear normalization. ICA and the third order moments are then employed for rotation and reflection normalization. It is shown that all affine transformed versions of an object have a unique or canonical representation. Experiments are conducted to asses the robustness of our approach. Proposed normalization technique can be used as a pre-processing for object modeling and recognition
基于独立分量分析的仿射不变曲线归一化新技术
提出了一种基于独立分量分析(ICA)的仿射不变曲线归一化方法。首先,主成分分析(PCA)用于平移、尺度和剪切归一化。ICA和三阶矩用于旋转和反射归一化。证明了一个对象的所有仿射变换版本都有一个唯一的或规范的表示。通过实验来评估我们的方法的鲁棒性。所提出的归一化技术可以作为对象建模和识别的预处理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信