{"title":"Improvement for the automatic part-of-speech tagging based on hidden Markov model","authors":"Lichi Yuan","doi":"10.1109/ICSPS.2010.5555259","DOIUrl":null,"url":null,"abstract":"In this paper, the Markov Family Models, a kind of statistical Models was firstly introduced. Under the assumption that the probability of a word depends both on its own tag and previous word, but its own tag and previous word are independent if the word is known, we simplify the Markov Family Model and use for part-of-speech tagging successfully. Experimental results show that this part-of-speech tagging method based on Markov Family Model has greatly improved the precision comparing the conventional POS tagging method based on Hidden Markov Model under the same testing conditions. The Markov Family Model is also very useful in other natural language processing technologies such as word segmentation, statistical parsing, text-to-speech, optical character recognition, etc.","PeriodicalId":234084,"journal":{"name":"2010 2nd International Conference on Signal Processing Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPS.2010.5555259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, the Markov Family Models, a kind of statistical Models was firstly introduced. Under the assumption that the probability of a word depends both on its own tag and previous word, but its own tag and previous word are independent if the word is known, we simplify the Markov Family Model and use for part-of-speech tagging successfully. Experimental results show that this part-of-speech tagging method based on Markov Family Model has greatly improved the precision comparing the conventional POS tagging method based on Hidden Markov Model under the same testing conditions. The Markov Family Model is also very useful in other natural language processing technologies such as word segmentation, statistical parsing, text-to-speech, optical character recognition, etc.