D. Sirtoli, S. Tortelli, P. Riva, M. Marchi, R. Cucitore, Mankaa Nangah
{"title":"Mechanical And Environmental Performances Of Sulpho-Based Rapid Hardening Concrete","authors":"D. Sirtoli, S. Tortelli, P. Riva, M. Marchi, R. Cucitore, Mankaa Nangah","doi":"10.14359/51688612","DOIUrl":null,"url":null,"abstract":"Calcium-sulphoaluminate cement (CSA) represents an eco-friendly alternative to ordinary portland cement (OPC), thanks to its lower energy consumption, special production process and raw materials. Life-Cycle Analysis (cradle-to-gate) according to ISO 14040 standard series showed a potential for substantial reduction of the environmental impacts, as well as natural resource use. Nowadays, CSA cement is being used more in construction industry thanks to its high early-age compressive strength and shrinkage-compensating behavior. This paper presents concrete mixtures with pure CSA and with OPC-CSA blends both in terms of environmental impact indicators from Environmental Product Declarations, and in terms of mechanical and rheological performance focusing on workability, compressive and flexural strength development, drying shrinkage and dynamic elastic modulus evolution from very early ages.","PeriodicalId":265581,"journal":{"name":"SP-305: Durability and Sustainability of Concrete Structures","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-305: Durability and Sustainability of Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/51688612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Calcium-sulphoaluminate cement (CSA) represents an eco-friendly alternative to ordinary portland cement (OPC), thanks to its lower energy consumption, special production process and raw materials. Life-Cycle Analysis (cradle-to-gate) according to ISO 14040 standard series showed a potential for substantial reduction of the environmental impacts, as well as natural resource use. Nowadays, CSA cement is being used more in construction industry thanks to its high early-age compressive strength and shrinkage-compensating behavior. This paper presents concrete mixtures with pure CSA and with OPC-CSA blends both in terms of environmental impact indicators from Environmental Product Declarations, and in terms of mechanical and rheological performance focusing on workability, compressive and flexural strength development, drying shrinkage and dynamic elastic modulus evolution from very early ages.