Quantum Adversary (Upper) Bound

S. Kimmel
{"title":"Quantum Adversary (Upper) Bound","authors":"S. Kimmel","doi":"10.4086/cjtcs.2013.004","DOIUrl":null,"url":null,"abstract":"We describe a method for upper bounding the quantum query complexity of certain boolean formula evaluation problems, using fundamental theorems about the general adversary bound. This nonconstructive method gives an upper bound on query complexity without producing an algorithm. For example, we describe an oracle problem that we prove (non-constructively) can be solved in O(1) queries, where the previous best quantum algorithm uses a polynomial number of queries. We then give an explicit O(1) query algorithm based on span programs, and show that for a special case of this problem, there exists a O(1) query algorithm that uses the quantum Haar transform. This special case is a potentially interesting problem in its own right, which we call the Haar Problem.","PeriodicalId":203487,"journal":{"name":"Chicago Journal of Theoretical Computer Science","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chicago Journal of Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4086/cjtcs.2013.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We describe a method for upper bounding the quantum query complexity of certain boolean formula evaluation problems, using fundamental theorems about the general adversary bound. This nonconstructive method gives an upper bound on query complexity without producing an algorithm. For example, we describe an oracle problem that we prove (non-constructively) can be solved in O(1) queries, where the previous best quantum algorithm uses a polynomial number of queries. We then give an explicit O(1) query algorithm based on span programs, and show that for a special case of this problem, there exists a O(1) query algorithm that uses the quantum Haar transform. This special case is a potentially interesting problem in its own right, which we call the Haar Problem.
量子对手(上)界
利用关于一般对手界的基本定理,给出了一类布尔公式求值问题的量子查询复杂度上界的一种方法。这种非构造方法在不产生算法的情况下给出了查询复杂度的上界。例如,我们描述了一个oracle问题,我们证明(非建设性地)可以在O(1)个查询中解决,其中先前的最佳量子算法使用多项式数量的查询。然后给出了一个基于跨规划的显式O(1)查询算法,并证明了对于该问题的一个特例,存在一个使用量子Haar变换的O(1)查询算法。这种特殊情况本身就是一个潜在的有趣问题,我们称之为哈尔问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信