Recombination lifetime modification in bulk, semi-insulating 4H-SiC photoconductive switches

C. Hettler, W. Sullivan, J. Dickens
{"title":"Recombination lifetime modification in bulk, semi-insulating 4H-SiC photoconductive switches","authors":"C. Hettler, W. Sullivan, J. Dickens","doi":"10.1109/PPC.2011.6191652","DOIUrl":null,"url":null,"abstract":"A series of high temperature annealing experiments were performed to characterize the processing parameters that alter the recombination lifetime in high purity, semi-insulating (HPSI) silicon carbide (SiC). All annealed samples were diced from a single 4H-SiC wafer with a measured resistivity of greater than 109 Ω-cm. The samples were annealed for various lengths of time in a PID-controlled high temperature induction furnace at 1810 °C. A 35 GHz microwave photoconductivity decay (MPCD) system was used to measure the transient photoconductivity of the as-grown and processed samples. Through numerical processing of the temporal characteristics of the illuminating laser pulse, the photoconductivity transients were simulated with various recombination lifetimes to fit the experimental MPCD data. The results show that the as-grown material has an average recombination lifetime of 6 ns. However, samples annealed for more than 100 minutes demonstrated recombination lifetimes in excess of 100 ns. The annealing process reduces the concentration of shallow point defects (Z1/Z2) in the bulk material which serve as recombination centers in HPSI 4H-SiC, extending the carrier lifetime. Finally, the impacts of increased recombination lifetime in photoconductive switch operation and performance are presented and discussed.","PeriodicalId":331835,"journal":{"name":"2011 IEEE Pulsed Power Conference","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.2011.6191652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A series of high temperature annealing experiments were performed to characterize the processing parameters that alter the recombination lifetime in high purity, semi-insulating (HPSI) silicon carbide (SiC). All annealed samples were diced from a single 4H-SiC wafer with a measured resistivity of greater than 109 Ω-cm. The samples were annealed for various lengths of time in a PID-controlled high temperature induction furnace at 1810 °C. A 35 GHz microwave photoconductivity decay (MPCD) system was used to measure the transient photoconductivity of the as-grown and processed samples. Through numerical processing of the temporal characteristics of the illuminating laser pulse, the photoconductivity transients were simulated with various recombination lifetimes to fit the experimental MPCD data. The results show that the as-grown material has an average recombination lifetime of 6 ns. However, samples annealed for more than 100 minutes demonstrated recombination lifetimes in excess of 100 ns. The annealing process reduces the concentration of shallow point defects (Z1/Z2) in the bulk material which serve as recombination centers in HPSI 4H-SiC, extending the carrier lifetime. Finally, the impacts of increased recombination lifetime in photoconductive switch operation and performance are presented and discussed.
半绝缘4H-SiC光导开关复合寿命的改进
通过一系列高温退火实验,表征了影响高纯半绝缘碳化硅复合寿命的工艺参数。所有退火后的样品均从单个4H-SiC晶圆上切块,测量电阻率大于109 Ω-cm。样品在1810°C的pid控制的高温感应炉中退火不同时间。采用35 GHz微波光电导率衰减(MPCD)系统测量了生长和加工样品的瞬态光电导率。通过数值处理照明激光脉冲的时间特性,模拟了不同复合寿命下的光电导率瞬态,以拟合MPCD实验数据。结果表明,生长材料的平均复合寿命为6ns。然而,退火超过100分钟的样品显示复合寿命超过100 ns。退火工艺降低了块体材料中作为HPSI - 4H-SiC复合中心的浅点缺陷(Z1/Z2)的浓度,延长了载流子寿命。最后,讨论了复合寿命的增加对光导开关工作和性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信