Building evidence graphs for network forensics analysis

Wei Wang, Thomas E. Daniels
{"title":"Building evidence graphs for network forensics analysis","authors":"Wei Wang, Thomas E. Daniels","doi":"10.1109/CSAC.2005.14","DOIUrl":null,"url":null,"abstract":"In this paper, we present techniques for a network forensics analysis mechanism that includes effective evidence presentation, manipulation and automated reasoning. We propose the evidence graph as a novel graph model to facilitate the presentation and manipulation of intrusion evidence. For automated evidence analysis, we develop a hierarchical reasoning framework that includes local reasoning and global reasoning. Local reasoning aims to infer the roles of suspicious hosts from local observations. Global reasoning aims to identify group of strongly correlated hosts in the attack and derive their relationships. By using the evidence graph model, we effectively integrate analyst feedback into the automated reasoning process. Experimental results demonstrate the potential and effectiveness of our proposed approaches","PeriodicalId":422994,"journal":{"name":"21st Annual Computer Security Applications Conference (ACSAC'05)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st Annual Computer Security Applications Conference (ACSAC'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAC.2005.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

In this paper, we present techniques for a network forensics analysis mechanism that includes effective evidence presentation, manipulation and automated reasoning. We propose the evidence graph as a novel graph model to facilitate the presentation and manipulation of intrusion evidence. For automated evidence analysis, we develop a hierarchical reasoning framework that includes local reasoning and global reasoning. Local reasoning aims to infer the roles of suspicious hosts from local observations. Global reasoning aims to identify group of strongly correlated hosts in the attack and derive their relationships. By using the evidence graph model, we effectively integrate analyst feedback into the automated reasoning process. Experimental results demonstrate the potential and effectiveness of our proposed approaches
为网络取证分析构建证据图
在本文中,我们提出了一种网络取证分析机制的技术,包括有效的证据呈现、操作和自动推理。为了方便入侵证据的表示和处理,我们提出了一种新的图形模型——证据图。对于自动证据分析,我们开发了一个分层推理框架,包括局部推理和全局推理。局部推理旨在从局部观察推断可疑主机的角色。全局推理旨在识别攻击中强相关主机组,并推导出它们之间的关系。通过使用证据图模型,我们有效地将分析师的反馈集成到自动推理过程中。实验结果证明了我们提出的方法的潜力和有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信