Transmission network expansion planning under an improved genetic algorithm

E. da Silva, H. Gil, J. Areiza
{"title":"Transmission network expansion planning under an improved genetic algorithm","authors":"E. da Silva, H. Gil, J. Areiza","doi":"10.1109/PICA.1999.779513","DOIUrl":null,"url":null,"abstract":"This paper describes the application of an improved genetic algorithm (IGA) to deal with the solution of the transmission network expansion planning (TNEP) problem. Genetic algorithms (GAs) have demonstrated the ability to deal with nonconvex, nonlinear, integer-mixed optimization problems, like the TNEP problem, better than a number of mathematical methodologies. Some special features have been added to the basic genetic algorithm (GA) to improve its performance in solving the TNEP problem for three real-life, large-scale transmission systems. Results obtained reveal that GAs represent a promising approach for dealing with such a problem. In this paper, the theoretical issues of GA applied to this problem are emphasized.","PeriodicalId":113146,"journal":{"name":"Proceedings of the 21st International Conference on Power Industry Computer Applications. Connecting Utilities. PICA 99. To the Millennium and Beyond (Cat. No.99CH36351)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Power Industry Computer Applications. Connecting Utilities. PICA 99. To the Millennium and Beyond (Cat. No.99CH36351)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1999.779513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 197

Abstract

This paper describes the application of an improved genetic algorithm (IGA) to deal with the solution of the transmission network expansion planning (TNEP) problem. Genetic algorithms (GAs) have demonstrated the ability to deal with nonconvex, nonlinear, integer-mixed optimization problems, like the TNEP problem, better than a number of mathematical methodologies. Some special features have been added to the basic genetic algorithm (GA) to improve its performance in solving the TNEP problem for three real-life, large-scale transmission systems. Results obtained reveal that GAs represent a promising approach for dealing with such a problem. In this paper, the theoretical issues of GA applied to this problem are emphasized.
基于改进遗传算法的输电网扩容规划
本文介绍了一种改进的遗传算法(IGA)在输电网扩展规划(TNEP)问题求解中的应用。遗传算法(GAs)已经证明了处理非凸、非线性、整数混合优化问题的能力,比如TNEP问题,比许多数学方法都要好。在基本遗传算法(GA)中加入了一些特殊的特征,以提高其在解决三个实际的大型输电系统的TNEP问题时的性能。得到的结果表明,GAs是处理这类问题的一种很有前途的方法。本文着重讨论了遗传算法应用于该问题的理论问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信