Evaluation of the modern visual SLAM methods

Arthur Huletski, D. Kartashov, K. Krinkin
{"title":"Evaluation of the modern visual SLAM methods","authors":"Arthur Huletski, D. Kartashov, K. Krinkin","doi":"10.1109/AINL-ISMW-FRUCT.2015.7382963","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization and Mapping (SLAM) is a challenging task in robotics. Researchers work hard on it, so several novel SLAM algorithms as well as enhancements for the known ones are published every year. We have selected recent (2013-mid. 2015) approaches that in theory can be run on mobile robot and evaluated it. This paper gives brief intuitive description of ORB-SLAM, LSD-SLAM, L-SLAM and OpenRatSLAM algorithms, then compares the algorithms theoretically (based on given description) and evaluates them with TUM RGB-D benchmark.","PeriodicalId":122232,"journal":{"name":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Simultaneous Localization and Mapping (SLAM) is a challenging task in robotics. Researchers work hard on it, so several novel SLAM algorithms as well as enhancements for the known ones are published every year. We have selected recent (2013-mid. 2015) approaches that in theory can be run on mobile robot and evaluated it. This paper gives brief intuitive description of ORB-SLAM, LSD-SLAM, L-SLAM and OpenRatSLAM algorithms, then compares the algorithms theoretically (based on given description) and evaluates them with TUM RGB-D benchmark.
现代视觉SLAM方法的评价
同时定位与映射(SLAM)是机器人领域的一个具有挑战性的课题。研究人员在这方面努力工作,因此每年都会发表一些新的SLAM算法以及对已知算法的改进。我们选择了近期(2013-中期)。2015)理论上可以在移动机器人上运行的方法并对其进行评估。本文对ORB-SLAM、LSD-SLAM、L-SLAM和OpenRatSLAM算法进行了简单直观的描述,并对这些算法进行了理论比较(基于给定的描述),并用TUM RGB-D基准进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信