Learning and evaluating visual features for pose estimation

Robert Sim, G. Dudek
{"title":"Learning and evaluating visual features for pose estimation","authors":"Robert Sim, G. Dudek","doi":"10.1109/ICCV.1999.790419","DOIUrl":null,"url":null,"abstract":"We present a method for learning a set of visual landmarks which are useful for pose estimation. The landmark learning mechanism is designed to be applicable to a wide range of environments, and generalized for different approaches to computing a pose estimate. Initially, each landmark is detected as a focal extremum of a measure of distinctiveness and represented by a principal components encoding which is exploited for matching. Attributes of the observed landmarks can be parameterized using a generic parameterization method and then evaluated in terms of their utility for pose estimation. We present experimental evidence that demonstrates the utility of the method.","PeriodicalId":358754,"journal":{"name":"Proceedings of the Seventh IEEE International Conference on Computer Vision","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1999.790419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

We present a method for learning a set of visual landmarks which are useful for pose estimation. The landmark learning mechanism is designed to be applicable to a wide range of environments, and generalized for different approaches to computing a pose estimate. Initially, each landmark is detected as a focal extremum of a measure of distinctiveness and represented by a principal components encoding which is exploited for matching. Attributes of the observed landmarks can be parameterized using a generic parameterization method and then evaluated in terms of their utility for pose estimation. We present experimental evidence that demonstrates the utility of the method.
学习和评估姿态估计的视觉特征
我们提出了一种学习一组视觉标志的方法,这些标志对姿态估计很有用。里程碑式学习机制被设计成适用于广泛的环境,并推广到计算姿态估计的不同方法。最初,每个地标被检测为显著性度量的焦点极值,并由用于匹配的主成分编码表示。观察到的地标属性可以使用通用参数化方法进行参数化,然后根据它们在姿态估计中的效用进行评估。我们提出了实验证据,证明了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信