Statistics-driven workload modeling for the Cloud

A. Ganapathi, Yanpei Chen, A. Fox, R. Katz, D. Patterson
{"title":"Statistics-driven workload modeling for the Cloud","authors":"A. Ganapathi, Yanpei Chen, A. Fox, R. Katz, D. Patterson","doi":"10.1109/ICDEW.2010.5452742","DOIUrl":null,"url":null,"abstract":"A recent trend for data-intensive computations is to use pay-as-you-go execution environments that scale transparently to the user. However, providers of such environments must tackle the challenge of configuring their system to provide maximal performance while minimizing the cost of resources used. In this paper, we use statistical models to predict resource requirements for Cloud computing applications. Such a prediction framework can guide system design and deployment decisions such as scale, scheduling, and capacity. In addition, we present initial design of a workload generator that can be used to evaluate alternative configurations without the overhead of reproducing a real workload. This paper focuses on statistical modeling and its application to data-intensive workloads.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"259","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 259

Abstract

A recent trend for data-intensive computations is to use pay-as-you-go execution environments that scale transparently to the user. However, providers of such environments must tackle the challenge of configuring their system to provide maximal performance while minimizing the cost of resources used. In this paper, we use statistical models to predict resource requirements for Cloud computing applications. Such a prediction framework can guide system design and deployment decisions such as scale, scheduling, and capacity. In addition, we present initial design of a workload generator that can be used to evaluate alternative configurations without the overhead of reproducing a real workload. This paper focuses on statistical modeling and its application to data-intensive workloads.
面向云的统计驱动工作负载建模
数据密集型计算的最新趋势是使用按需付费的执行环境,这种环境对用户是透明的。然而,这种环境的提供者必须解决这样的挑战:配置他们的系统,以提供最大的性能,同时最小化所使用的资源成本。在本文中,我们使用统计模型来预测云计算应用程序的资源需求。这样的预测框架可以指导系统设计和部署决策,例如规模、调度和容量。此外,我们还提供了一个工作负载生成器的初始设计,该生成器可用于评估备选配置,而无需重新生成实际工作负载的开销。本文主要研究统计建模及其在数据密集型工作负载中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信