Building recognition system based on deep learning

P. Bezák
{"title":"Building recognition system based on deep learning","authors":"P. Bezák","doi":"10.1109/ICAIPR.2016.7585230","DOIUrl":null,"url":null,"abstract":"Deep learning architectures based on convolutional neural networks (CNN) are very successful in image recognition tasks. These architectures use a cascade of convolution layers and activation functions. The setup of the number of layers and the number of neurons in each layer, the choice of activation functions and training optimization algorithm are very important. I present GPU implementation of CNN with feature extractors designed for building recognition, learned in a supervised way and achieve very good results.","PeriodicalId":127231,"journal":{"name":"2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIPR.2016.7585230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Deep learning architectures based on convolutional neural networks (CNN) are very successful in image recognition tasks. These architectures use a cascade of convolution layers and activation functions. The setup of the number of layers and the number of neurons in each layer, the choice of activation functions and training optimization algorithm are very important. I present GPU implementation of CNN with feature extractors designed for building recognition, learned in a supervised way and achieve very good results.
构建基于深度学习的识别系统
基于卷积神经网络(CNN)的深度学习架构在图像识别任务中非常成功。这些架构使用层叠的卷积层和激活函数。层数和每层神经元数的设置、激活函数的选择和训练优化算法都是非常重要的。我提出了CNN的GPU实现,并设计了用于构建识别的特征提取器,以监督的方式学习并取得了非常好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信