Object Tracking Using Globally Coordinated Nonlinear Manifolds

Che-Bin Liu, Ruei-Sung Lin, Ming-Hsuan Yang, N. Ahuja, S. Levinson
{"title":"Object Tracking Using Globally Coordinated Nonlinear Manifolds","authors":"Che-Bin Liu, Ruei-Sung Lin, Ming-Hsuan Yang, N. Ahuja, S. Levinson","doi":"10.1109/ICPR.2006.885","DOIUrl":null,"url":null,"abstract":"We present a dynamic inference algorithm in a globally parameterized nonlinear manifold and demonstrate it on the problem of visual tracking. An appearance manifold is usually nonlinear, embedded in a high dimensional space, and can be approximated by a mixture of locally linear models. Existing methods for nonlinear dimensionality reduction, which map an appearance manifold to a single low dimensional coordinate system, preserve only spatial relationships among manifold points and render low dimensional embeddings rather than mapping functions. In this paper, we parameterize the mixture of linear appearance subspaces of an object in a global coordinate system, and apply it to visual tracking using a Rao-Blackwellized particle filter. Experimental results demonstrate that the proposed approach performs well on object tracking problem in scenes with significant clutter and temporary occlusions which pose difficulties for other methods","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a dynamic inference algorithm in a globally parameterized nonlinear manifold and demonstrate it on the problem of visual tracking. An appearance manifold is usually nonlinear, embedded in a high dimensional space, and can be approximated by a mixture of locally linear models. Existing methods for nonlinear dimensionality reduction, which map an appearance manifold to a single low dimensional coordinate system, preserve only spatial relationships among manifold points and render low dimensional embeddings rather than mapping functions. In this paper, we parameterize the mixture of linear appearance subspaces of an object in a global coordinate system, and apply it to visual tracking using a Rao-Blackwellized particle filter. Experimental results demonstrate that the proposed approach performs well on object tracking problem in scenes with significant clutter and temporary occlusions which pose difficulties for other methods
全局协调非线性流形的目标跟踪
提出了一种全局参数化非线性流形的动态推理算法,并在视觉跟踪问题上进行了验证。外观流形通常是非线性的,嵌入在高维空间中,可以用局部线性模型的混合来近似。现有的非线性降维方法将外观流形映射到单个低维坐标系,只保留流形点之间的空间关系,并且呈现低维嵌入而不是映射函数。在本文中,我们在全局坐标系中参数化了物体的线性外观子空间的混合,并使用rao - blackwelzed粒子滤波将其应用于视觉跟踪。实验结果表明,该方法在具有明显杂波和暂时遮挡的场景中具有较好的目标跟踪效果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信