Direction Dependent Decomposition and Edge Detection

P. Rajavel, R. Aravind
{"title":"Direction Dependent Decomposition and Edge Detection","authors":"P. Rajavel, R. Aravind","doi":"10.1109/IPTA.2008.4743782","DOIUrl":null,"url":null,"abstract":"This paper presents the multiscale directional decomposition based on the directional frequency information of an image. In general, the pixel values of an image predominantly changes in only a few directions, based on this fact, the directional decomposition is achieved. Two different approaches are used for decomposition namely direction dependent filter bank (DDFB) and multiscale directional Gaussian filter (MDGF). DDFB use the Laplacian pyramid for multiscale decomposition followed by DFB for directional decomposition. MDGF use the Laplacian pyramid for multiscale decomposition followed by directional Gaussian filters for directional decomposition. The number of DDFB subbands at nth stage is 3(2n-2) with a redundancy factor of 4/3. The number of MDFG subbands at nth stage is m(2n-2). This directional dependent decomposition is used for edge detection and results show the better performance compared to several edge detection techniques in the presence of noise.","PeriodicalId":384072,"journal":{"name":"2008 First Workshops on Image Processing Theory, Tools and Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First Workshops on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2008.4743782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the multiscale directional decomposition based on the directional frequency information of an image. In general, the pixel values of an image predominantly changes in only a few directions, based on this fact, the directional decomposition is achieved. Two different approaches are used for decomposition namely direction dependent filter bank (DDFB) and multiscale directional Gaussian filter (MDGF). DDFB use the Laplacian pyramid for multiscale decomposition followed by DFB for directional decomposition. MDGF use the Laplacian pyramid for multiscale decomposition followed by directional Gaussian filters for directional decomposition. The number of DDFB subbands at nth stage is 3(2n-2) with a redundancy factor of 4/3. The number of MDFG subbands at nth stage is m(2n-2). This directional dependent decomposition is used for edge detection and results show the better performance compared to several edge detection techniques in the presence of noise.
方向相关分解和边缘检测
提出了一种基于图像方向频率信息的多尺度方向分解方法。通常情况下,图像的像素值主要只在少数几个方向上发生变化,基于这一事实,实现了方向分解。分解采用两种不同的方法,即方向相关滤波器组(DDFB)和多尺度定向高斯滤波器(MDGF)。DDFB采用拉普拉斯金字塔法进行多尺度分解,然后采用DFB法进行定向分解。MDGF使用拉普拉斯金字塔进行多尺度分解,然后使用定向高斯滤波器进行定向分解。第n级DDFB子带数为3(2n-2),冗余系数为4/3。MDFG在第n阶段的子带数为m(2n-2)。将这种方向相关分解用于边缘检测,结果表明,在存在噪声的情况下,与几种边缘检测技术相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信