Economic-statistical design of EWMA-semicircle charts under the Taguchi loss function

Shin-Li Lu
{"title":"Economic-statistical design of EWMA-semicircle charts under the Taguchi loss function","authors":"Shin-Li Lu","doi":"10.1504/EJIE.2019.10022257","DOIUrl":null,"url":null,"abstract":"A single exponentially weighted moving average (EWMA) chart is effectively used to monitor the process mean and/or variance simultaneously. An EWMA-semicircle (EWMA-SC) chart designed from the economic-statistical perspective is proposed, which incorporates Taguchi's quadratic loss function into Lorenzen and Vance's cost model. Moreover, economic-statistical performance and the effect on process capability index are compared to those with sum of square EWMA (SS-EWMA) and maximum EWMA (MaxEWMA) charts. The optimal decision variables - namely, sample size n, sampling interval time h, control limit width L and smoothing constant λ - are obtained by minimising the expected cost function. Via simulations, the EWMA-SC chart is found to incur the smallest expected cost when a process mean and variance simultaneously shift. However, the MaxEWMA chart incurs the lowest cost of defective products when a process means shifts on its own. [Received: 1 May 2017; Revised: 22 August 2018; Accepted: 3 January 2019]","PeriodicalId":314867,"journal":{"name":"European J. of Industrial Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European J. of Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/EJIE.2019.10022257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A single exponentially weighted moving average (EWMA) chart is effectively used to monitor the process mean and/or variance simultaneously. An EWMA-semicircle (EWMA-SC) chart designed from the economic-statistical perspective is proposed, which incorporates Taguchi's quadratic loss function into Lorenzen and Vance's cost model. Moreover, economic-statistical performance and the effect on process capability index are compared to those with sum of square EWMA (SS-EWMA) and maximum EWMA (MaxEWMA) charts. The optimal decision variables - namely, sample size n, sampling interval time h, control limit width L and smoothing constant λ - are obtained by minimising the expected cost function. Via simulations, the EWMA-SC chart is found to incur the smallest expected cost when a process mean and variance simultaneously shift. However, the MaxEWMA chart incurs the lowest cost of defective products when a process means shifts on its own. [Received: 1 May 2017; Revised: 22 August 2018; Accepted: 3 January 2019]
田口损失函数下ewma -半圆图的经济统计设计
单个指数加权移动平均(EWMA)图被有效地用于同时监测过程均值和/或方差。从经济统计的角度出发,将田口的二次损失函数与Lorenzen和Vance的成本模型相结合,设计了ewma -半圆图(EWMA-SC)。此外,将经济统计绩效和对过程能力指标的影响与平方和EWMA (SS-EWMA)和最大EWMA (MaxEWMA)图进行了比较。最优决策变量——即样本量n、采样间隔时间h、控制极限宽度L和平滑常数λ——通过最小化期望成本函数获得。通过仿真,发现当过程均值和方差同时移动时,EWMA-SC图产生的期望成本最小。然而,当一个过程意味着自己的转变时,MaxEWMA图表产生的缺陷产品成本最低。[收稿日期:2017年5月1日;修订日期:2018年8月22日;录用日期:2019年1月3日]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信