Multi-resolution template kernels

C. Needham, R. Boyle
{"title":"Multi-resolution template kernels","authors":"C. Needham, R. Boyle","doi":"10.1109/ICPR.2004.1334138","DOIUrl":null,"url":null,"abstract":"Domains in which shapes of objects change rapidly and significantly are a challenge for existing representation techniques: sport is a good example of this. We present a texture-based approach that copes with these problems in addition to resolution variation. A set of exemplar poses are learned from subsampled example images of the target object, creating a set of multi-resolution template kernels which when convolved with the image respond suitably. This technique may then be used in established tracking algorithms (e.g. CONDENSATION [Isard, M et al., 1996]). We demonstrate the technique in two domains, and suggest a Markov approach using it to model behaviour.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Domains in which shapes of objects change rapidly and significantly are a challenge for existing representation techniques: sport is a good example of this. We present a texture-based approach that copes with these problems in addition to resolution variation. A set of exemplar poses are learned from subsampled example images of the target object, creating a set of multi-resolution template kernels which when convolved with the image respond suitably. This technique may then be used in established tracking algorithms (e.g. CONDENSATION [Isard, M et al., 1996]). We demonstrate the technique in two domains, and suggest a Markov approach using it to model behaviour.
多分辨率模板内核
物体形状变化迅速且显著的领域对现有的表现技术构成了挑战:体育运动就是一个很好的例子。我们提出了一种基于纹理的方法,除了分辨率变化之外,还可以处理这些问题。从目标物体的子采样样例图像中学习一组样例姿态,创建一组多分辨率模板核,当与图像卷积时,这些模板核具有适当的响应。该技术可用于已建立的跟踪算法(如冷凝[Isard, M等人,1996])。我们在两个领域展示了该技术,并建议使用它来建模行为的马尔可夫方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信