Model-driven computational sprinting

Nathaniel Morris, Christopher Stewart, L. Chen, R. Birke, Jaimie Kelley
{"title":"Model-driven computational sprinting","authors":"Nathaniel Morris, Christopher Stewart, L. Chen, R. Birke, Jaimie Kelley","doi":"10.1145/3190508.3190543","DOIUrl":null,"url":null,"abstract":"Computational sprinting speeds up query execution by increasing power usage for short bursts. Sprinting policy decides when and how long to sprint. Poor policies inflate response time significantly. We propose a model-driven approach that chooses between sprinting policies based on their expected response time. However, sprinting alters query executions at runtime, creating a complex dependency between queuing and processing time. Our performance modeling approach employs offline profiling, machine learning, and first-principles simulation. Collectively, these modeling techniques capture the effects of sprinting on response time. We validated our modeling approach with 3 sprinting mechanisms across 9 workloads. Our performance modeling approach predicted response time with median error below 4% in most tests and median error of 11% in the worst case. We demonstrated model-driven sprinting for cloud providers seeking to colocate multiple workloads on AWS Burstable Instances while meeting service level objectives. Model-driven sprinting uncovered policies that achieved response time goals, allowing more workloads to colocate on a node. Compared to AWS Burstable policies, our approach increased revenue per node by 1.6X.","PeriodicalId":334267,"journal":{"name":"Proceedings of the Thirteenth EuroSys Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Thirteenth EuroSys Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3190508.3190543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Computational sprinting speeds up query execution by increasing power usage for short bursts. Sprinting policy decides when and how long to sprint. Poor policies inflate response time significantly. We propose a model-driven approach that chooses between sprinting policies based on their expected response time. However, sprinting alters query executions at runtime, creating a complex dependency between queuing and processing time. Our performance modeling approach employs offline profiling, machine learning, and first-principles simulation. Collectively, these modeling techniques capture the effects of sprinting on response time. We validated our modeling approach with 3 sprinting mechanisms across 9 workloads. Our performance modeling approach predicted response time with median error below 4% in most tests and median error of 11% in the worst case. We demonstrated model-driven sprinting for cloud providers seeking to colocate multiple workloads on AWS Burstable Instances while meeting service level objectives. Model-driven sprinting uncovered policies that achieved response time goals, allowing more workloads to colocate on a node. Compared to AWS Burstable policies, our approach increased revenue per node by 1.6X.
模型驱动的计算冲刺
计算冲刺通过增加短爆发的功耗来加快查询执行速度。冲刺策略决定了何时和多长时间冲刺。糟糕的政策显著延长了响应时间。我们提出了一种模型驱动的方法,它根据预期的响应时间在冲刺策略之间进行选择。但是,sprint改变了运行时的查询执行,在排队时间和处理时间之间创建了复杂的依赖关系。我们的性能建模方法采用离线分析、机器学习和第一性原理模拟。总的来说,这些建模技术捕获了冲刺对响应时间的影响。我们在9个工作负载中使用3种冲刺机制验证了我们的建模方法。我们的性能建模方法预测的响应时间在大多数测试中误差中值低于4%,在最坏的情况下误差中值为11%。我们为寻求在AWS Burstable实例上配置多个工作负载同时满足服务级别目标的云提供商演示了模型驱动的冲刺。模型驱动的冲刺发现了实现响应时间目标的策略,允许更多的工作负载在一个节点上共存。与AWS Burstable策略相比,我们的方法使每个节点的收入增加了1.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信