Research on the infrared and visible Power-Equipment image fusion for inspection robots

Hongwei Li, Binhai Wang, Li Li
{"title":"Research on the infrared and visible Power-Equipment image fusion for inspection robots","authors":"Hongwei Li, Binhai Wang, Li Li","doi":"10.1109/CARPI.2010.5624441","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel and robust fusion algorithm for the infrared and visible Power-Equipment image, which is invariant to large-scale changes and illumination changes in the real operating environment of Power Equipments. Firstly, the Scale-Invariant Feature Transform (SIFT) algorithm is used to extract and describe the feature points from the infrared and visible images. Secondly, the best feature matching for each feature point of visible images is found by identifying its nearest neighbor in the database of feature points from infrared images. Thirdly, the Random Sample Consensus (RANSAC) technology is chose to select the appropriate geometric transformation model and estimate the transformation parameters of this geometric model. Finally, the bicubic interpolation method is employed to implement grayscale interpolation and coordinate transformation, then obtain the fusion image of visible and infrared images. Extensive experimental results on the Power-Equipment dataset demonstrate that our method has high stability and excellent performance.","PeriodicalId":374619,"journal":{"name":"2010 1st International Conference on Applied Robotics for the Power Industry","volume":"412 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 1st International Conference on Applied Robotics for the Power Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPI.2010.5624441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we present a novel and robust fusion algorithm for the infrared and visible Power-Equipment image, which is invariant to large-scale changes and illumination changes in the real operating environment of Power Equipments. Firstly, the Scale-Invariant Feature Transform (SIFT) algorithm is used to extract and describe the feature points from the infrared and visible images. Secondly, the best feature matching for each feature point of visible images is found by identifying its nearest neighbor in the database of feature points from infrared images. Thirdly, the Random Sample Consensus (RANSAC) technology is chose to select the appropriate geometric transformation model and estimate the transformation parameters of this geometric model. Finally, the bicubic interpolation method is employed to implement grayscale interpolation and coordinate transformation, then obtain the fusion image of visible and infrared images. Extensive experimental results on the Power-Equipment dataset demonstrate that our method has high stability and excellent performance.
检测机器人红外与可见光动力设备图像融合研究
本文提出了一种新的、鲁棒的电力设备红外图像与可见光图像融合算法,该算法不受电力设备实际运行环境中大规模变化和光照变化的影响。首先,利用尺度不变特征变换(SIFT)算法对红外和可见光图像的特征点进行提取和描述;其次,通过识别红外图像特征点数据库中每个特征点的最近邻,找到可见光图像中每个特征点的最佳特征匹配;第三,选择随机样本一致性(RANSAC)技术选择合适的几何变换模型,并估计该几何模型的变换参数;最后,采用双三次插值方法进行灰度插值和坐标变换,得到可见光和红外图像的融合图像。在电力设备数据集上的大量实验结果表明,该方法具有较高的稳定性和优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信