Design of extrafine complex directional wavelet transform and application to image denoising

Shrishail S. Gajbhar, M. Joshi
{"title":"Design of extrafine complex directional wavelet transform and application to image denoising","authors":"Shrishail S. Gajbhar, M. Joshi","doi":"10.1109/MMSP.2014.6958794","DOIUrl":null,"url":null,"abstract":"In this paper, we propose decimated and undecimated designs of extrafine complex directional wavelet transform (EFiCDWT) having 12 highpass directional subbands at each scale. EFiCDWT is obtained using a new mapping-based complex wavelet transform (CWT) followed by a complex-valued filter bank (FB) stage. The FB stage having 2-D prototype complex FIR filters designed using complex transformations, finely decompose the 6 complex directional subbands of CWT to have extra directionality. Our design on decimated EFiCDWT is near shift-invariant with redundancy factor of 2 (due to complex coefficients) while undecimated design is completely shift-invariant and hence useful for image denoising. Main advantage of the proposed designs is their directional extensibility with possible generalized separable implementations. The proposed designs are tested for image denoising application using simple hard-thresholding scheme and they show better denoising performance.","PeriodicalId":164858,"journal":{"name":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2014.6958794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose decimated and undecimated designs of extrafine complex directional wavelet transform (EFiCDWT) having 12 highpass directional subbands at each scale. EFiCDWT is obtained using a new mapping-based complex wavelet transform (CWT) followed by a complex-valued filter bank (FB) stage. The FB stage having 2-D prototype complex FIR filters designed using complex transformations, finely decompose the 6 complex directional subbands of CWT to have extra directionality. Our design on decimated EFiCDWT is near shift-invariant with redundancy factor of 2 (due to complex coefficients) while undecimated design is completely shift-invariant and hence useful for image denoising. Main advantage of the proposed designs is their directional extensibility with possible generalized separable implementations. The proposed designs are tested for image denoising application using simple hard-thresholding scheme and they show better denoising performance.
超细复方向小波变换的设计及其在图像去噪中的应用
在本文中,我们提出了在每个尺度上具有12个高通方向子带的超精细复方向小波变换(EFiCDWT)的抽取和非抽取设计。EFiCDWT是利用一种新的基于映射的复小波变换(CWT)和复值滤波器组(FB)得到的。FB阶段采用复杂变换设计二维原型复杂FIR滤波器,对CWT的6个复杂方向子带进行精细分解,使其具有额外的方向性。我们在抽取EFiCDWT上的设计接近移位不变性,冗余系数为2(由于复杂系数),而非抽取设计是完全移位不变性的,因此对图像去噪有用。所提出的设计的主要优点是它们具有可能的广义可分离实现的定向可扩展性。采用简单的硬阈值算法对所提算法进行了图像去噪测试,结果表明所提算法具有较好的去噪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信