Managing information disparity in multilingual document collections

Kevin Duh, C. Yeung, Tomoharu Iwata, M. Nagata
{"title":"Managing information disparity in multilingual document collections","authors":"Kevin Duh, C. Yeung, Tomoharu Iwata, M. Nagata","doi":"10.1145/2442076.2442077","DOIUrl":null,"url":null,"abstract":"Information disparity is a major challenge with multilingual document collections. When documents are dynamically updated in a distributed fashion, information content among different language editions may gradually diverge. We propose a framework for assisting human editors to manage this information disparity, using tools from machine translation and machine learning. Given source and target documents in two different languages, our system automatically identifies information nuggets that are new with respect to the target and suggests positions to place their translations. We perform both real-world experiments and large-scale simulations on Wikipedia documents and conclude our system is effective in a variety of scenarios.","PeriodicalId":412532,"journal":{"name":"ACM Trans. Speech Lang. Process.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Speech Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2442076.2442077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Information disparity is a major challenge with multilingual document collections. When documents are dynamically updated in a distributed fashion, information content among different language editions may gradually diverge. We propose a framework for assisting human editors to manage this information disparity, using tools from machine translation and machine learning. Given source and target documents in two different languages, our system automatically identifies information nuggets that are new with respect to the target and suggests positions to place their translations. We perform both real-world experiments and large-scale simulations on Wikipedia documents and conclude our system is effective in a variety of scenarios.
管理多语言文档集合中的信息差异
信息差异是多语言文献收集面临的主要挑战。当文档以分布式方式动态更新时,不同语言版本之间的信息内容可能会逐渐出现分歧。我们提出了一个框架来帮助人类编辑管理这种信息差异,使用机器翻译和机器学习的工具。给定两种不同语言的源文档和目标文档,我们的系统会自动识别相对于目标而言的新信息块,并建议放置其翻译的位置。我们对维基百科文档进行了真实世界的实验和大规模的模拟,并得出结论,我们的系统在各种场景下都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信