Prognostics of lithium-ion batteries using model-based and data-driven methods

Chao-Shiou Chen, M. Pecht
{"title":"Prognostics of lithium-ion batteries using model-based and data-driven methods","authors":"Chao-Shiou Chen, M. Pecht","doi":"10.1109/PHM.2012.6228850","DOIUrl":null,"url":null,"abstract":"This paper presents an integrated approach to predict remaining useful life (RUL) of lithium-ion batteries using model-based and data-driven methods. An empirical model is adopted to emulate the battery degradation trend; real-time measurements are employed to update the model. In order to better deal with prognostics uncertainties arising from many sources in the prediction such as battery unit-to-unit variations, an online model update scheme is proposed in a particle filtering based framework. Filtered data within a moving window are used to adjust the model's parameter values in a real-time manner based on nonlinear least-squares optimization. The proposed approach is studied via experimental data, and the results are discussed.","PeriodicalId":444815,"journal":{"name":"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM.2012.6228850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

This paper presents an integrated approach to predict remaining useful life (RUL) of lithium-ion batteries using model-based and data-driven methods. An empirical model is adopted to emulate the battery degradation trend; real-time measurements are employed to update the model. In order to better deal with prognostics uncertainties arising from many sources in the prediction such as battery unit-to-unit variations, an online model update scheme is proposed in a particle filtering based framework. Filtered data within a moving window are used to adjust the model's parameter values in a real-time manner based on nonlinear least-squares optimization. The proposed approach is studied via experimental data, and the results are discussed.
基于模型和数据驱动方法的锂离子电池预测
本文提出了一种基于模型和数据驱动的锂离子电池剩余使用寿命预测方法。采用经验模型模拟电池退化趋势;采用实时测量对模型进行更新。为了更好地处理电池单元间变化等多种因素引起的预测不确定性,提出了一种基于粒子滤波的模型在线更新方案。基于非线性最小二乘优化,利用移动窗口内的过滤数据实时调整模型的参数值。通过实验数据对该方法进行了研究,并对结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信