Deep Neural Networks for Encrypted Inference with TFHE

A. Stoian, Jordan Fréry, Roman Bredehoft, Luis Montero, Celia Kherfallah, Benoît Chevallier-Mames
{"title":"Deep Neural Networks for Encrypted Inference with TFHE","authors":"A. Stoian, Jordan Fréry, Roman Bredehoft, Luis Montero, Celia Kherfallah, Benoît Chevallier-Mames","doi":"10.48550/arXiv.2302.10906","DOIUrl":null,"url":null,"abstract":"Fully homomorphic encryption (FHE) is an encryption method that allows to perform computation on encrypted data, without decryption. FHE preserves the privacy of the users of online services that handle sensitive data, such as health data, biometrics, credit scores and other personal information. A common way to provide a valuable service on such data is through machine learning and, at this time, Neural Networks are the dominant machine learning model for unstructured data. In this work we show how to construct Deep Neural Networks (DNN) that are compatible with the constraints of TFHE, an FHE scheme that allows arbitrary depth computation circuits. We discuss the constraints and show the architecture of DNNs for two computer vision tasks. We benchmark the architectures using the Concrete stack, an open-source implementation of TFHE.","PeriodicalId":256404,"journal":{"name":"IACR Cryptology ePrint Archive","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptology ePrint Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.10906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Fully homomorphic encryption (FHE) is an encryption method that allows to perform computation on encrypted data, without decryption. FHE preserves the privacy of the users of online services that handle sensitive data, such as health data, biometrics, credit scores and other personal information. A common way to provide a valuable service on such data is through machine learning and, at this time, Neural Networks are the dominant machine learning model for unstructured data. In this work we show how to construct Deep Neural Networks (DNN) that are compatible with the constraints of TFHE, an FHE scheme that allows arbitrary depth computation circuits. We discuss the constraints and show the architecture of DNNs for two computer vision tasks. We benchmark the architectures using the Concrete stack, an open-source implementation of TFHE.
基于TFHE的深度神经网络加密推理
完全同态加密(FHE)是一种允许对加密数据执行计算而不需要解密的加密方法。FHE保护处理敏感数据(如健康数据、生物特征、信用评分和其他个人信息)的在线服务用户的隐私。在这些数据上提供有价值服务的一种常见方法是通过机器学习,而此时,神经网络是非结构化数据的主要机器学习模型。在这项工作中,我们展示了如何构建与TFHE约束兼容的深度神经网络(DNN), TFHE是一种允许任意深度计算电路的FHE方案。我们讨论了两个计算机视觉任务的约束条件,并展示了dnn的体系结构。我们使用Concrete栈(TFHE的开源实现)对架构进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信