P4Pir: in-network analysis for smart IoT gateways

Mingyuan Zang, Changgang Zheng, Radostin Stoyanov, L. Dittmann, Noa Zilberman
{"title":"P4Pir: in-network analysis for smart IoT gateways","authors":"Mingyuan Zang, Changgang Zheng, Radostin Stoyanov, L. Dittmann, Noa Zilberman","doi":"10.1145/3546037.3546060","DOIUrl":null,"url":null,"abstract":"IoT gateways are vital to the scalability and security of IoT networks. As more devices connect to the network, traditional hard-coded gateways fail to flexibly process diverse IoT traffic from highly dynamic devices. This calls for a more advanced analysis solution. In this work, we present P4Pir, an in-network traffic analysis solution for IoT gateways. It utilizes programmable data planes for in-band traffic learning with self-driven machine learning model updates. Preliminary results show that P4Pir can accurately detect emerging attacks based on retraining and updating the machine learning model.","PeriodicalId":351682,"journal":{"name":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546037.3546060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

IoT gateways are vital to the scalability and security of IoT networks. As more devices connect to the network, traditional hard-coded gateways fail to flexibly process diverse IoT traffic from highly dynamic devices. This calls for a more advanced analysis solution. In this work, we present P4Pir, an in-network traffic analysis solution for IoT gateways. It utilizes programmable data planes for in-band traffic learning with self-driven machine learning model updates. Preliminary results show that P4Pir can accurately detect emerging attacks based on retraining and updating the machine learning model.
P4Pir:智能物联网网关的网内分析
物联网网关对物联网网络的可扩展性和安全性至关重要。随着越来越多的设备接入网络,传统的硬编码网关无法灵活处理来自高动态设备的各种物联网流量。这需要更高级的分析解决方案。在这项工作中,我们提出了P4Pir,一种物联网网关的网络内流量分析解决方案。它利用可编程数据平面进行带内流量学习,并具有自驱动的机器学习模型更新。初步结果表明,基于再训练和更新机器学习模型,P4Pir可以准确检测新出现的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信