Mingyuan Zang, Changgang Zheng, Radostin Stoyanov, L. Dittmann, Noa Zilberman
{"title":"P4Pir: in-network analysis for smart IoT gateways","authors":"Mingyuan Zang, Changgang Zheng, Radostin Stoyanov, L. Dittmann, Noa Zilberman","doi":"10.1145/3546037.3546060","DOIUrl":null,"url":null,"abstract":"IoT gateways are vital to the scalability and security of IoT networks. As more devices connect to the network, traditional hard-coded gateways fail to flexibly process diverse IoT traffic from highly dynamic devices. This calls for a more advanced analysis solution. In this work, we present P4Pir, an in-network traffic analysis solution for IoT gateways. It utilizes programmable data planes for in-band traffic learning with self-driven machine learning model updates. Preliminary results show that P4Pir can accurately detect emerging attacks based on retraining and updating the machine learning model.","PeriodicalId":351682,"journal":{"name":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546037.3546060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
IoT gateways are vital to the scalability and security of IoT networks. As more devices connect to the network, traditional hard-coded gateways fail to flexibly process diverse IoT traffic from highly dynamic devices. This calls for a more advanced analysis solution. In this work, we present P4Pir, an in-network traffic analysis solution for IoT gateways. It utilizes programmable data planes for in-band traffic learning with self-driven machine learning model updates. Preliminary results show that P4Pir can accurately detect emerging attacks based on retraining and updating the machine learning model.